Discrete Optimization with Interval Data Minmax Regret and Fuzzy Approach /

In operations research applications we are often faced with the problem of incomplete or uncertain data. This book considers solving combinatorial optimization problems with imprecise data modeled by intervals and fuzzy intervals. It focuses on some basic and traditional problems, such as minimum sp...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Kasperski, Adam (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2008.
Σειρά:Studies in Fuzziness and Soft Computing, 228
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Minmax Regret Combinatorial Optimization Problems with Interval Data
  • Problem Formulation
  • Evaluation of Optimality of Solutions and Elements
  • Exact Algorithms
  • Approximation Algorithms
  • Minmax Regret Minimum Selecting Items
  • Minmax Regret Minimum Spanning Tree
  • Minmax Regret Shortest Path
  • Minmax Regret Minimum Assignment
  • Minmax Regret Minimum s???t Cut
  • Fuzzy Combinatorial Optimization Problem
  • Conclusions and Open Problems
  • Minmax Regret Sequencing Problems with Interval Data
  • Problem Formulation
  • Sequencing Problem with Maximum Lateness Criterion
  • Sequencing Problem with Weighted Number of Late Jobs
  • Sequencing Problem with the Total Flow Time Criterion
  • Conclusions and Open Problems
  • Discrete Scenario Representation of Uncertainty.