Mechanics of non-holonomic systems A New Class of control systems /

A general approach to the derivation of equations of motion of as holonomic, as nonholonomic systems with the constraints of any order is suggested. The system of equations of motion in the generalized coordinates is regarded as a one vector relation, represented in a space tangential to a manifold...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Soltakhanov, Shervani Kh (Συγγραφέας), Yushkov, Mikhail P. (Συγγραφέας), Zegzhda, Sergei A. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2009.
Σειρά:Foundations of Engineering Mechanics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03935nam a22005175i 4500
001 978-3-540-85847-8
003 DE-He213
005 20151029211330.0
007 cr nn 008mamaa
008 100301s2009 gw | s |||| 0|eng d
020 |a 9783540858478  |9 978-3-540-85847-8 
024 7 |a 10.1007/978-3-540-85847-8  |2 doi 
040 |d GrThAP 
050 4 |a TA349-359 
072 7 |a TGMD  |2 bicssc 
072 7 |a TEC009070  |2 bisacsh 
072 7 |a SCI041000  |2 bisacsh 
082 0 4 |a 620.1  |2 23 
100 1 |a Soltakhanov, Shervani Kh.  |e author. 
245 1 0 |a Mechanics of non-holonomic systems  |h [electronic resource] :  |b A New Class of control systems /  |c by Shervani Kh. Soltakhanov, Mikhail P. Yushkov, Sergei A. Zegzhda. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2009. 
300 |a XXXII, 332 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Foundations of Engineering Mechanics,  |x 1612-1384 
505 0 |a Holonomic Systems -- Nonholonomic Systems -- Linear Transformation Of Forces -- Application Of A Tangent Space To The Study Of Constrained Motion -- The Mixed Problem Of Dynamics. New Class Of Control Problems -- Application Of The Lagrange Multipliers To The Construction Of Three New Methods For The Study Of Mechanical Systems -- Equations Of Motion In Quasicoordinates. 
520 |a A general approach to the derivation of equations of motion of as holonomic, as nonholonomic systems with the constraints of any order is suggested. The system of equations of motion in the generalized coordinates is regarded as a one vector relation, represented in a space tangential to a manifold of all possible positions of system at given instant. The tangential space is partitioned by the equations of constraints into two orthogonal subspaces. In one of them for the constraints up to the second order, the motion low is given by the equations of constraints and in the other one for ideal constraints, it is described by the vector equation without reactions of connections. In the whole space the motion low involves Lagrangian multipliers. It is shown that for the holonomic and nonholonomic constraints up to the second order, these multipliers can be found as the function of time, positions of system, and its velocities. The application of Lagrangian multipliers for holonomic systems permits us to construct a new method for determining the eigenfrequencies and eigenforms of oscillations of elastic systems and also to suggest a special form of equations for describing the system of motion of rigid bodies. The nonholonomic constraints, the order of which is greater than two, are regarded as programming constraints such that their validity is provided due to the existence of generalized control forces, which are determined as the functions of time. The closed system of differential equations, which makes it possible to find as these control forces, as the generalized Lagrange coordinates, is compound. The theory suggested is illustrated by the examples of a spacecraft motion. The book is primarily addressed to specialists in analytic mechanics. 
650 0 |a Engineering. 
650 0 |a Mechanics. 
650 0 |a Computational intelligence. 
650 0 |a Mechanics, Applied. 
650 1 4 |a Engineering. 
650 2 4 |a Theoretical and Applied Mechanics. 
650 2 4 |a Computational Intelligence. 
650 2 4 |a Mechanics. 
700 1 |a Yushkov, Mikhail P.  |e author. 
700 1 |a Zegzhda, Sergei A.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540858461 
830 0 |a Foundations of Engineering Mechanics,  |x 1612-1384 
856 4 0 |u http://dx.doi.org/10.1007/978-3-540-85847-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)