Endoscopy for GSp(4) and the Cohomology of Siegel Modular Threefolds

The geometry of modular curves and the structure of their cohomology groups have been a rich source for various number-theoretical applications over the last decades. Similar applications may be expected from the arithmetic of higher dimensional modular varieties. For Siegel modular threefolds some...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Weissauer, Rainer (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2009.
Σειρά:Lecture Notes in Mathematics, 1968
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02760nam a22005415i 4500
001 978-3-540-89306-6
003 DE-He213
005 20151204160834.0
007 cr nn 008mamaa
008 100301s2009 gw | s |||| 0|eng d
020 |a 9783540893066  |9 978-3-540-89306-6 
024 7 |a 10.1007/978-3-540-89306-6  |2 doi 
040 |d GrThAP 
050 4 |a QA331-355 
072 7 |a PBKD  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515.9  |2 23 
100 1 |a Weissauer, Rainer.  |e author. 
245 1 0 |a Endoscopy for GSp(4) and the Cohomology of Siegel Modular Threefolds  |h [electronic resource] /  |c by Rainer Weissauer. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2009. 
300 |a XVIII, 374 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1968 
505 0 |a An Application of the Hard Lefschetz Theorem -- CAP-Localization -- The Ramanujan Conjecture for Genus two Siegel modular Forms -- Character identities and Galois representations related to the group GSp(4) -- Local and Global Endoscopy for GSp(4) -- A special Case of the Fundamental Lemma I -- A special Case of the Fundamental Lemma II -- The Langlands-Shelstad transfer factor -- Fundamental lemma (twisted case) -- Reduction to unit elements -- Appendix on Galois cohomology -- Appendix on Double Cosets. 
520 |a The geometry of modular curves and the structure of their cohomology groups have been a rich source for various number-theoretical applications over the last decades. Similar applications may be expected from the arithmetic of higher dimensional modular varieties. For Siegel modular threefolds some basic results on their cohomology groups are derived in this book from considering topological trace formulas. 
650 0 |a Mathematics. 
650 0 |a Functions of complex variables. 
650 0 |a Geometry. 
650 0 |a Number theory. 
650 0 |a Manifolds (Mathematics). 
650 0 |a Complex manifolds. 
650 1 4 |a Mathematics. 
650 2 4 |a Functions of a Complex Variable. 
650 2 4 |a Geometry. 
650 2 4 |a Number Theory. 
650 2 4 |a Several Complex Variables and Analytic Spaces. 
650 2 4 |a Manifolds and Cell Complexes (incl. Diff.Topology). 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540893059 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1968 
856 4 0 |u http://dx.doi.org/10.1007/978-3-540-89306-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (Springer-11649)