Bohmian Mechanics The Physics and Mathematics of Quantum Theory /

Bohmian Mechanics was formulated in 1952 by David Bohm as a complete theory of quantum phenomena based on a particle picture. It was promoted some decades later by John S. Bell, who, intrigued by the manifestly nonlocal structure of the theory, was led to his famous Bell's inequalities. Experim...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Teufel, Stefan (Συγγραφέας), Dürr, Detlef (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2009.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03271nam a22005295i 4500
001 978-3-540-89344-8
003 DE-He213
005 20151204143240.0
007 cr nn 008mamaa
008 100301s2009 gw | s |||| 0|eng d
020 |a 9783540893448  |9 978-3-540-89344-8 
024 7 |a 10.1007/b99978  |2 doi 
040 |d GrThAP 
050 4 |a QC173.96-174.52 
072 7 |a PHQ  |2 bicssc 
072 7 |a SCI057000  |2 bisacsh 
082 0 4 |a 530.12  |2 23 
100 1 |a Teufel, Stefan.  |e author. 
245 1 0 |a Bohmian Mechanics  |h [electronic resource] :  |b The Physics and Mathematics of Quantum Theory /  |c by Stefan Teufel, Detlef Dürr. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2009. 
300 |a XII, 393 p. 41 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Classical Physics -- Symmetry -- Chance -- Brownian motion -- The Beginning of Quantum Theory -- Schr#x00F6;dinger#x2019;s Equation -- Bohmian Mechanics -- The Macroscopic World -- Nonlocality -- The Wave Function and Quantum Equilibrium -- From Physics to Mathematics -- Hilbert Space -- The Schr#x00F6;dinger Operator -- Measures and Operators -- Bohmian Mechanics on Scattering Theory -- Epilogue. 
520 |a Bohmian Mechanics was formulated in 1952 by David Bohm as a complete theory of quantum phenomena based on a particle picture. It was promoted some decades later by John S. Bell, who, intrigued by the manifestly nonlocal structure of the theory, was led to his famous Bell's inequalities. Experimental tests of the inequalities verified that nature is indeed nonlocal. Bohmian mechanics has since then prospered as the straightforward completion of quantum mechanics. This book provides a systematic introduction to Bohmian mechanics and to the mathematical abstractions of quantum mechanics, which range from the self-adjointness of the Schrödinger operator to scattering theory. It explains how the quantum formalism emerges when Boltzmann's ideas about statistical mechanics are applied to Bohmian mechanics. The book is self-contained, mathematically rigorous and an ideal starting point for a fundamental approach to quantum mechanics. It will appeal to students and newcomers to the field, as well as to established scientists seeking a clear exposition of the theory. 
650 0 |a Physics. 
650 0 |a Probabilities. 
650 0 |a Quantum physics. 
650 0 |a Atoms. 
650 0 |a Statistical physics. 
650 0 |a Dynamical systems. 
650 1 4 |a Physics. 
650 2 4 |a Quantum Physics. 
650 2 4 |a Atomic, Molecular, Optical and Plasma Physics. 
650 2 4 |a Theoretical, Mathematical and Computational Physics. 
650 2 4 |a Mathematical Methods in Physics. 
650 2 4 |a Statistical Physics, Dynamical Systems and Complexity. 
650 2 4 |a Probability Theory and Stochastic Processes. 
700 1 |a Dürr, Detlef.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540893431 
856 4 0 |u http://dx.doi.org/10.1007/b99978  |z Full Text via HEAL-Link 
912 |a ZDB-2-PHA 
950 |a Physics and Astronomy (Springer-11651)