Adaptive Differential Evolution A Robust Approach to Multimodal Problem Optimization /

Optimization problems are ubiquitous in academic research and real-world applications wherever such resources as space, time and cost are limited. Researchers and practitioners need to solve problems fundamental to their daily work which, however, may show a variety of challenging characteristics su...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Zhang, Jingqiao (Συγγραφέας), Sanderson, Arthur C. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2009.
Σειρά:Adaptation Learning and Optimization, 1
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04209nam a22005775i 4500
001 978-3-642-01527-4
003 DE-He213
005 20151204165707.0
007 cr nn 008mamaa
008 100301s2009 gw | s |||| 0|eng d
020 |a 9783642015274  |9 978-3-642-01527-4 
024 7 |a 10.1007/978-3-642-01527-4  |2 doi 
040 |d GrThAP 
050 4 |a TA342-343 
072 7 |a PBWH  |2 bicssc 
072 7 |a TBJ  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
072 7 |a TEC009060  |2 bisacsh 
082 0 4 |a 003.3  |2 23 
100 1 |a Zhang, Jingqiao.  |e author. 
245 1 0 |a Adaptive Differential Evolution  |h [electronic resource] :  |b A Robust Approach to Multimodal Problem Optimization /  |c by Jingqiao Zhang, Arthur C. Sanderson. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2009. 
300 |a XIII, 164 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Adaptation Learning and Optimization,  |x 1867-4534 ;  |v 1 
505 0 |a Related Work and Background -- Theoretical Analysis of Differential Evolution -- Parameter Adaptive Differential Evolution -- Surrogate Model-Based Differential Evolution -- Adaptive Multi-objective Differential Evolution -- Application to Winner Determination Problems in Combinatorial Auctions -- Application to Flight Planning in Air Traffic Control Systems -- Application to the TPM Optimization in Credit Decision Making -- Conclusions and Future Work. 
520 |a Optimization problems are ubiquitous in academic research and real-world applications wherever such resources as space, time and cost are limited. Researchers and practitioners need to solve problems fundamental to their daily work which, however, may show a variety of challenging characteristics such as discontinuity, nonlinearity, nonconvexity, and multimodality. It is expected that solving a complex optimization problem itself should easy to use, reliable and efficient to achieve satisfactory solutions. Differential evolution is a recent branch of evolutionary algorithms that is capable of addressing a wide set of complex optimization problems in a relatively uniform and conceptually simple manner. For better performance, the control parameters of differential evolution need to be set appropriately as they have different effects on evolutionary search behaviours for various problems or at different optimization stages of a single problem. The fundamental theme of the book is theoretical study of differential evolution and algorithmic analysis of parameter adaptive schemes. Topics covered in this book include: Theoretical analysis of differential evolution and its control parameters Algorithmic design and comparative analysis of parameter adaptive schemes Scalability analysis of adaptive differential evolution Adaptive differential evolution for multi-objective optimization Incorporation of surrogate model for computationally expensive optimization Application to winner determination in combinatorial auctions of E-Commerce Application to flight route planning in Air Traffic Management Application to transition probability matrix optimization in credit-decision making. 
650 0 |a Mathematics. 
650 0 |a Operations research. 
650 0 |a Decision making. 
650 0 |a Artificial intelligence. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 0 |a Mathematical models. 
650 1 4 |a Mathematics. 
650 2 4 |a Mathematical Modeling and Industrial Mathematics. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Appl.Mathematics/Computational Methods of Engineering. 
650 2 4 |a Operation Research/Decision Theory. 
650 2 4 |a Applications of Mathematics. 
700 1 |a Sanderson, Arthur C.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642015267 
830 0 |a Adaptation Learning and Optimization,  |x 1867-4534 ;  |v 1 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-01527-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)