Blow-up Theories for Semilinear Parabolic Equations

There is an enormous amount of work in the literature about the blow-up behavior of evolution equations. It is our intention to introduce the theory by emphasizing the methods while seeking to avoid massive technical computations. To reach this goal, we use the simplest equation to illustrate the me...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Hu, Bei (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2011.
Σειρά:Lecture Notes in Mathematics, 2018
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02378nam a22005175i 4500
001 978-3-642-18460-4
003 DE-He213
005 20151204181003.0
007 cr nn 008mamaa
008 110317s2011 gw | s |||| 0|eng d
020 |a 9783642184604  |9 978-3-642-18460-4 
024 7 |a 10.1007/978-3-642-18460-4  |2 doi 
040 |d GrThAP 
050 4 |a QA370-380 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT007000  |2 bisacsh 
082 0 4 |a 515.353  |2 23 
100 1 |a Hu, Bei.  |e author. 
245 1 0 |a Blow-up Theories for Semilinear Parabolic Equations  |h [electronic resource] /  |c by Bei Hu. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2011. 
300 |a X, 127 p. 2 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2018 
505 0 |a 1 Introduction -- 2 A review of elliptic theories -- 3 A review of parabolic theories -- 4 A review of fixed point theorems.-5 Finite time Blow-up for evolution equations -- 6 Steady-State solutions -- 7 Blow-up rate -- 8 Asymptotically self-similar blow-up solutions -- 9 One space variable case. 
520 |a There is an enormous amount of work in the literature about the blow-up behavior of evolution equations. It is our intention to introduce the theory by emphasizing the methods while seeking to avoid massive technical computations. To reach this goal, we use the simplest equation to illustrate the methods; these methods very often apply to more general equations. 
650 0 |a Mathematics. 
650 0 |a Mathematical analysis. 
650 0 |a Analysis (Mathematics). 
650 0 |a Partial differential equations. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 1 4 |a Mathematics. 
650 2 4 |a Partial Differential Equations. 
650 2 4 |a Applications of Mathematics. 
650 2 4 |a Analysis. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642184598 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2018 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-18460-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (Springer-11649)