Ensembles in Machine Learning Applications

This book contains the extended papers presented at the 3rd Workshop on Supervised and Unsupervised Ensemble Methods and their Applications (SUEMA) that was held in conjunction with the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML/PKDD...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Okun, Oleg (Επιμελητής έκδοσης), Valentini, Giorgio (Επιμελητής έκδοσης), Re, Matteo (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2011.
Σειρά:Studies in Computational Intelligence, 373
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03395nam a22004815i 4500
001 978-3-642-22910-7
003 DE-He213
005 20151125201727.0
007 cr nn 008mamaa
008 110830s2011 gw | s |||| 0|eng d
020 |a 9783642229107  |9 978-3-642-22910-7 
024 7 |a 10.1007/978-3-642-22910-7  |2 doi 
040 |d GrThAP 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
245 1 0 |a Ensembles in Machine Learning Applications  |h [electronic resource] /  |c edited by Oleg Okun, Giorgio Valentini, Matteo Re. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2011. 
300 |a XX, 252 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Computational Intelligence,  |x 1860-949X ;  |v 373 
505 0 |a From the content: Facial Action Unit Recognition Using Filtered Local Binary Pattern Features with Bootstrapped and Weighted ECOC Classifiers -- On the Design of Low Redundancy Error-Correcting Output Codes -- Minimally-Sized Balanced Decomposition Schemes for Multi-Class Classification -- Bias-Variance Analysis of ECOC and Bagging Using Neural Nets -- Fast-ensembles of Minimum Redundancy Feature Selection. 
520 |a This book contains the extended papers presented at the 3rd Workshop on Supervised and Unsupervised Ensemble Methods and their Applications (SUEMA) that was held in conjunction with the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML/PKDD 2010, Barcelona, Catalonia, Spain). As its two predecessors, its main theme was ensembles of supervised and unsupervised algorithms – advanced machine learning and data mining technique. Unlike a single classification or clustering algorithm, an ensemble is a group of algorithms, each of which first independently solves the task at hand by assigning a class or cluster label (voting) to instances in a dataset and after that all votes are combined together to produce the final class or cluster membership. As a result, ensembles often outperform best single algorithms in many real-world problems.   This book consists of 14 chapters, each of which can be read independently of the others. In addition to two previous SUEMA editions, also published by Springer, many chapters in the current book include pseudo code and/or programming code of the algorithms described in them. This was done in order to facilitate ensemble adoption in practice and to help to both researchers and engineers developing ensemble applications. 
650 0 |a Engineering. 
650 0 |a Artificial intelligence. 
650 0 |a Computational intelligence. 
650 1 4 |a Engineering. 
650 2 4 |a Computational Intelligence. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
700 1 |a Okun, Oleg.  |e editor. 
700 1 |a Valentini, Giorgio.  |e editor. 
700 1 |a Re, Matteo.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642229091 
830 0 |a Studies in Computational Intelligence,  |x 1860-949X ;  |v 373 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-22910-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)