Finsler Geometry An Approach via Randers Spaces /

"Finsler Geometry: An Approach via Randers Spaces" exclusively deals with a special class of Finsler metrics -- Randers metrics, which are defined as the sum of a Riemannian metric and a 1-form. Randers metrics derive from the research on General Relativity Theory and have been applied in...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Cheng, Xinyue (Συγγραφέας), Shen, Zhongmin (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2012.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02871nam a22004695i 4500
001 978-3-642-24888-7
003 DE-He213
005 20151204143642.0
007 cr nn 008mamaa
008 130129s2012 gw | s |||| 0|eng d
020 |a 9783642248887  |9 978-3-642-24888-7 
024 7 |a 10.1007/978-3-642-24888-7  |2 doi 
040 |d GrThAP 
050 4 |a QA641-670 
072 7 |a PBMP  |2 bicssc 
072 7 |a MAT012030  |2 bisacsh 
082 0 4 |a 516.36  |2 23 
100 1 |a Cheng, Xinyue.  |e author. 
245 1 0 |a Finsler Geometry  |h [electronic resource] :  |b An Approach via Randers Spaces /  |c by Xinyue Cheng, Zhongmin Shen. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2012. 
300 |a VIII, 150 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Randers Spaces -- Randers Metrics and Geodesics -- Randers Metrics of Isotropic S-Curvature -- Riemann Curvature and Ricci Curvature -- Projective Geometry of Randers Spaces -- Randers Metrics with Special Riemann Curvature Properties -- Randers Metrics of Weakly Isotropic Flag Curvature.-Projectively Flat Randers Metrics -- Conformal Geometry of Randers Metrics -- Dually Flat Randers Metrics. 
520 |a "Finsler Geometry: An Approach via Randers Spaces" exclusively deals with a special class of Finsler metrics -- Randers metrics, which are defined as the sum of a Riemannian metric and a 1-form. Randers metrics derive from the research on General Relativity Theory and have been applied in many areas of the natural sciences. They can also be naturally deduced as the solution of the Zermelo navigation problem. The book provides readers not only with essential findings on Randers metrics but also the core ideas and methods which are useful in Finsler geometry. It will be of significant interest to researchers and practitioners working in Finsler geometry, even in differential geometry or related natural fields. Xinyue Cheng is a Professor at the School of Mathematics and Statistics of Chongqing University of Technology, China. Zhongmin Shen is a Professor at the Department of Mathematical Sciences of Indiana University Purdue University, USA. 
650 0 |a Mathematics. 
650 0 |a Geometry. 
650 0 |a Differential geometry. 
650 0 |a Physics. 
650 1 4 |a Mathematics. 
650 2 4 |a Differential Geometry. 
650 2 4 |a Geometry. 
650 2 4 |a Mathematical Methods in Physics. 
700 1 |a Shen, Zhongmin.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642248870 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-24888-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)