Data Science, Learning by Latent Structures, and Knowledge Discovery
This volume comprises papers dedicated to data science and the extraction of knowledge from many types of data: structural, quantitative, or statistical approaches for the analysis of data; advances in classification, clustering, and pattern recognition methods; strategies for modeling complex data...
Συγγραφή απο Οργανισμό/Αρχή: | SpringerLink (Online service) |
---|---|
Άλλοι συγγραφείς: | Lausen, Berthold (Επιμελητής έκδοσης), Krolak-Schwerdt, Sabine (Επιμελητής έκδοσης), Böhmer, Matthias (Επιμελητής έκδοσης) |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Berlin, Heidelberg :
Springer Berlin Heidelberg : Imprint: Springer,
2015.
|
Σειρά: | Studies in Classification, Data Analysis, and Knowledge Organization,
|
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Παρόμοια τεκμήρια
-
Comparing Distributions
ανά: Thas, Olivier
Έκδοση: (2010) -
Challenges at the Interface of Data Analysis, Computer Science, and Optimization Proceedings of the 34th Annual Conference of the Gesellschaft für Klassifikation e. V., Karlsruhe, July 21 - 23, 2010 /
Έκδοση: (2012) -
Algorithms from and for Nature and Life Classification and Data Analysis /
Έκδοση: (2013) -
Functional Data Analysis with R and MATLAB
ανά: Ramsay, James, κ.ά.
Έκδοση: (2009) -
Graphics of Large Datasets Visualizing a Million /
ανά: Unwin, Antony, κ.ά.
Έκδοση: (2006)