Self-Organizing Neural Networks Recent Advances and Applications /

The Self-Organizing Map (SOM) is one of the most frequently used architectures for unsupervised artificial neural networks. Introduced by Teuvo Kohonen in the 1980s, SOMs have been developed as a very powerful method for visualization and unsupervised classification tasks by an active and innovative...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Seiffert, Udo (Επιμελητής έκδοσης, http://id.loc.gov/vocabulary/relators/edt)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Heidelberg : Physica-Verlag HD : Imprint: Physica, 2002.
Έκδοση:1st ed. 2002.
Σειρά:Studies in Fuzziness and Soft Computing, 78
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04506nam a2200541 4500
001 978-3-7908-1810-9
003 DE-He213
005 20191220130354.0
007 cr nn 008mamaa
008 131025s2002 gw | s |||| 0|eng d
020 |a 9783790818109  |9 978-3-7908-1810-9 
024 7 |a 10.1007/978-3-7908-1810-9  |2 doi 
040 |d GrThAP 
050 4 |a Q334-342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
245 1 0 |a Self-Organizing Neural Networks  |h [electronic resource] :  |b Recent Advances and Applications /  |c edited by Udo Seiffert. 
250 |a 1st ed. 2002. 
264 1 |a Heidelberg :  |b Physica-Verlag HD :  |b Imprint: Physica,  |c 2002. 
300 |a XIV, 278 p. 465 illus., 5 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Fuzziness and Soft Computing,  |x 1434-9922 ;  |v 78 
505 0 |a Overture -- Measures for the Organization of Self-Organizing Maps -- Unsupervised Learning and Self-Organization in Networks of Spiking Neurons -- Generative Probability Density Model in the Self-Organizing Map -- Growing Multi-Dimensional Self-Organizing Maps for Motion Detection -- Extensions and Modifications of the Kohonen-SOM and Applications in Remote Sensing Image Analysis -- Modeling Speech Processing and Recognition in the Auditory System Using the Multilevel Hypermap Architecture -- Algorithms for the Visualization of Large and Multivariate Data Sets -- Self-Organizing Maps and Financial Forecasting: an Application -- Unsupervised and Supervised Learning in Radial-Basis-Function Networks -- Parallel Implementations of Self-Organizing Maps. 
520 |a The Self-Organizing Map (SOM) is one of the most frequently used architectures for unsupervised artificial neural networks. Introduced by Teuvo Kohonen in the 1980s, SOMs have been developed as a very powerful method for visualization and unsupervised classification tasks by an active and innovative community of interna­ tional researchers. A number of extensions and modifications have been developed during the last two decades. The reason is surely not that the original algorithm was imperfect or inad­ equate. It is rather the universal applicability and easy handling of the SOM. Com­ pared to many other network paradigms, only a few parameters need to be arranged and thus also for a beginner the network leads to useful and reliable results. Never­ theless there is scope for improvements and sophisticated new developments as this book impressively demonstrates. The number of published applications utilizing the SOM appears to be unending. As the title of this book indicates, the reader will benefit from some of the latest the­ oretical developments and will become acquainted with a number of challenging real-world applications. Our aim in producing this book has been to provide an up­ to-date treatment of the field of self-organizing neural networks, which will be ac­ cessible to researchers, practitioners and graduated students from diverse disciplines in academics and industry. We are very grateful to the father of the SOMs, Professor Teuvo Kohonen for sup­ porting this book and contributing the first chapter. 
650 0 |a Artificial intelligence. 
650 0 |a Computers. 
650 0 |a Statistical physics. 
650 0 |a Dynamical systems. 
650 1 4 |a Artificial Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/I21000 
650 2 4 |a Computation by Abstract Devices.  |0 http://scigraph.springernature.com/things/product-market-codes/I16013 
650 2 4 |a Complex Systems.  |0 http://scigraph.springernature.com/things/product-market-codes/P33000 
650 2 4 |a Statistical Physics and Dynamical Systems.  |0 http://scigraph.springernature.com/things/product-market-codes/P19090 
700 1 |a Seiffert, Udo.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783662003435 
776 0 8 |i Printed edition:  |z 9783662003428 
776 0 8 |i Printed edition:  |z 9783790814170 
830 0 |a Studies in Fuzziness and Soft Computing,  |x 1434-9922 ;  |v 78 
856 4 0 |u https://doi.org/10.1007/978-3-7908-1810-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
912 |a ZDB-2-BAE 
950 |a Engineering (Springer-11647)