Design, Modeling and Experiments of 3-DOF Electromagnetic Spherical Actuators

A spherical actuator is a novel electric device that can achieve 2/3-DOF rotational motions in a single joint with electric power input. It has advantages such as compact structure, low mass/moment of inertia, fast response and non-singularities within the workspace. It has promising applications in...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Yan, Liang (Συγγραφέας), Chen, I-Ming (Συγγραφέας), Lim, Chee Kian (Συγγραφέας), Yang, Guilin (Συγγραφέας), Lee, Kok-Meng (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Dordrecht : Springer Netherlands, 2011.
Σειρά:Mechanisms and Machine Science, 4
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 06648nam a22005895i 4500
001 978-94-007-1646-9
003 DE-He213
005 20151125201843.0
007 cr nn 008mamaa
008 110606s2011 ne | s |||| 0|eng d
020 |a 9789400716469  |9 978-94-007-1646-9 
024 7 |a 10.1007/978-94-007-1646-9  |2 doi 
040 |d GrThAP 
050 4 |a TJ210.2-211.495 
050 4 |a TJ163.12 
072 7 |a TJFM  |2 bicssc 
072 7 |a TJFD  |2 bicssc 
072 7 |a TEC004000  |2 bisacsh 
072 7 |a TEC037000  |2 bisacsh 
082 0 4 |a 629.8  |2 23 
100 1 |a Yan, Liang.  |e author. 
245 1 0 |a Design, Modeling and Experiments of 3-DOF Electromagnetic Spherical Actuators  |h [electronic resource] /  |c by Liang Yan, I-Ming Chen, Chee Kian Lim, Guilin Yang, Kok-Meng Lee. 
264 1 |a Dordrecht :  |b Springer Netherlands,  |c 2011. 
300 |a XXII, 166 p. 120 illus., 58 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Mechanisms and Machine Science,  |x 2211-0984 ;  |v 4 
505 0 |a List of Figures -- List of Tables -- 1 Introduction -- 1.1 Background and Motivation -- 1.2 The State of the -- 1.3 Objective and Scope of the Study -- 1.4 Book Organization -- References -- 2 Magnetic Field Modeling -- 2.1 Introduction -- 2.2 Configuration of Rotor Poles -- 2.3 Magnetic Scalar Potential -- 2.3.1 Relations Between H and B for Three Regions -- 2.3.2 Laplace’s Equations for Three Regions -- 2.3.3 General Solution of Laplace’s Equation -- 2.4 Spherical Harmonic Expansion of M0r -- 2.5 Boundary Conditions -- 2.5.1 Boundary Condition A or Far Field Boundary Condition (BIrjr!¥ = 0, BIq jr!¥ = 0 and BIf jr!¥ = 0) -- 2.5.2 Boundary Condition B (BIrjr=Rr = BIIrjr=Rr ) -- 2.5.3 Boundary Condition C (HIf jr=Rr = HIIf jr=Rr and  HIq jr=Rr = HIIq jr=Rr ) -- 2.5.4 Finite Boundary Condition D at r = 0 (BIIIrjr=0 6= ¥, BIIIq jr=0 6= ¥ and BIIIf jr=0 6= ¥) -- 2.5.5 Boundary Condition E (BIIrjr=Rb = BIIIrjr=Rb ) -- 2.5.6 Boundary Condition F (HIIf jr=Rb = HIIIf jr=Rb and HIIq jr=Rb = HIIIq jr=Rb ) -- 2.5.7 Solution of Coefficients x mnI and kmnI -- 2.6 Solutions of Scalar Potential and Flux Density -- 2.7 Simplification of Magnetic Field Model -- 2.8 Summary -- References -- 3 Torque Modeling -- 3.1 Introduction -- 3.2 Formulation of Actuator Torque -- 3.2.1 Torque Generating Component of Flux Density -- 3.2.2 Torque Model for a Single Coil -- 3.2.3 Torque Model for Complete Set of Coils -- 3.2.4 Orientation Dependance of Torque Model -- 3.3 Solution of Inverse Electromagnetics -- 3.3.1 Nonsingularity of the Workspace -- 3.3.2 Minimum Right-inverse Solution of Electromagnetics -- 3.4 Summary -- References -- 4 Prototype Development -- 4.1 Introduction -- 4.1.1 Prototype of PM Spherical Actuator -- 4.1.2 Equations for Actuator Design -- 4.2 Rotor Pole Design -- 4.2.1 Longitudinal Angle a versus a -- 4.2.2 Latitudinal Angle b versus c -- 4.2.3 Rotor Radius Rr versus d4 -- 4.2.4 Rotor Core Radius Rb versus d4 -- 4.2.5 Relative Permeability mr versus d4 -- 4.2.6 Result of PM Pole Design -- 4.3 Coil Pole Design -- 4.3.1 Geometric Parameters of Coil -- 4.3.2 Increase Number of Winding Turns -- 4.3.3 Material of Coil Frame -- 4.4 Stator -- 4.5 Spherical Bearing -- 4.6 Summary -- References -- 5 Experimental Investigation -- 5.1 Measurement of PM Rotor Magnetic Field -- 5.1.1 Flux Density Measurement Apparatus -- 5.1.2 Flux Density Data Processing -- 5.1.3 Visualization and Analysis of Experimental Result -- 5.2 Measurement of Actuator Torque Output -- 5.2.1 Experiment on Torque Generated by a Single Coil -- 5.2.2 Experiment on Torque Generated by Multiple Coils -- 5.3 Summary -- References -- 6 Three Degree-of-freedom Optical Orientation Measurement -- 6.1 Introduction -- 6.2 Operating Principle -- 6.3 Algorithm for Computing Rotation Angles -- 6.3.1 Definition of Coordinate Systems -- 6.3.2 Calculation of Tilting Angles -- 6.3.3 Calculation of Spinning Angle -- 6.4 Experimental Measurement -- 6.4.1 Experimental Measurement on Apparatus 1 -- 6.4.2 Experimental Measurement on Apparatus 2 -- 6.5 Conclusion -- References -- 7 Conclusions -- 7.1 Accomplishments and Contributions -- 7.2 Recommendation for Future Research -- References -- Index. 
520 |a A spherical actuator is a novel electric device that can achieve 2/3-DOF rotational motions in a single joint with electric power input. It has advantages such as compact structure, low mass/moment of inertia, fast response and non-singularities within the workspace. It has promising applications in robotics, automobile, manufacturing, medicine and aerospace industry. This is the first monograph that introduces the research on spherical actuators systematically.  It broadens the scope of actuators from conventional single-axis to multi-axis, which will help both beginners and researchers to enhance their knowledge on electromagnetic actuators. Generic analytic modeling methods for magnetic field and torque output are developed, which can be applied to the development of other electromagnetic actuators. A parametric design methodology that allows fast analysis and design of spherical actuators for various applications is proposed. A novel non-contact high-precision 3-DOF spherical motion sensing methodology is developed and evaluated with experiments, which shows that it can achieve one order of magnitude higher precision than conventional methods. The technologies of nondimensionalization and normalization are introduced into magnetic field analysis the first time, and a benchmark database is established for the reference of other researches on spherical actuators. Indexed in the Book Citation Index– Science (BKCI-S). 
650 0 |a Engineering. 
650 0 |a Mechanical engineering. 
650 0 |a Control engineering. 
650 0 |a Robotics. 
650 0 |a Mechatronics. 
650 0 |a Electrical engineering. 
650 1 4 |a Engineering. 
650 2 4 |a Control, Robotics, Mechatronics. 
650 2 4 |a Electrical Engineering. 
650 2 4 |a Mechanical Engineering. 
700 1 |a Chen, I-Ming.  |e author. 
700 1 |a Lim, Chee Kian.  |e author. 
700 1 |a Yang, Guilin.  |e author. 
700 1 |a Lee, Kok-Meng.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9789400716452 
830 0 |a Mechanisms and Machine Science,  |x 2211-0984 ;  |v 4 
856 4 0 |u http://dx.doi.org/10.1007/978-94-007-1646-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)