Design, Modeling and Experiments of 3-DOF Electromagnetic Spherical Actuators
A spherical actuator is a novel electric device that can achieve 2/3-DOF rotational motions in a single joint with electric power input. It has advantages such as compact structure, low mass/moment of inertia, fast response and non-singularities within the workspace. It has promising applications in...
Κύριοι συγγραφείς: | , , , , |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Dordrecht :
Springer Netherlands,
2011.
|
Σειρά: | Mechanisms and Machine Science,
4 |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- List of Figures
- List of Tables
- 1 Introduction
- 1.1 Background and Motivation
- 1.2 The State of the
- 1.3 Objective and Scope of the Study
- 1.4 Book Organization
- References
- 2 Magnetic Field Modeling
- 2.1 Introduction
- 2.2 Configuration of Rotor Poles
- 2.3 Magnetic Scalar Potential
- 2.3.1 Relations Between H and B for Three Regions
- 2.3.2 Laplace’s Equations for Three Regions
- 2.3.3 General Solution of Laplace’s Equation
- 2.4 Spherical Harmonic Expansion of M0r
- 2.5 Boundary Conditions
- 2.5.1 Boundary Condition A or Far Field Boundary Condition (BIrjr!¥ = 0, BIq jr!¥ = 0 and BIf jr!¥ = 0)
- 2.5.2 Boundary Condition B (BIrjr=Rr = BIIrjr=Rr )
- 2.5.3 Boundary Condition C (HIf jr=Rr = HIIf jr=Rr and HIq jr=Rr = HIIq jr=Rr )
- 2.5.4 Finite Boundary Condition D at r = 0 (BIIIrjr=0 6= ¥, BIIIq jr=0 6= ¥ and BIIIf jr=0 6= ¥)
- 2.5.5 Boundary Condition E (BIIrjr=Rb = BIIIrjr=Rb )
- 2.5.6 Boundary Condition F (HIIf jr=Rb = HIIIf jr=Rb and HIIq jr=Rb = HIIIq jr=Rb )
- 2.5.7 Solution of Coefficients x mnI and kmnI
- 2.6 Solutions of Scalar Potential and Flux Density
- 2.7 Simplification of Magnetic Field Model
- 2.8 Summary
- References
- 3 Torque Modeling
- 3.1 Introduction
- 3.2 Formulation of Actuator Torque
- 3.2.1 Torque Generating Component of Flux Density
- 3.2.2 Torque Model for a Single Coil
- 3.2.3 Torque Model for Complete Set of Coils
- 3.2.4 Orientation Dependance of Torque Model
- 3.3 Solution of Inverse Electromagnetics
- 3.3.1 Nonsingularity of the Workspace
- 3.3.2 Minimum Right-inverse Solution of Electromagnetics
- 3.4 Summary
- References
- 4 Prototype Development
- 4.1 Introduction
- 4.1.1 Prototype of PM Spherical Actuator
- 4.1.2 Equations for Actuator Design
- 4.2 Rotor Pole Design
- 4.2.1 Longitudinal Angle a versus a
- 4.2.2 Latitudinal Angle b versus c
- 4.2.3 Rotor Radius Rr versus d4
- 4.2.4 Rotor Core Radius Rb versus d4
- 4.2.5 Relative Permeability mr versus d4
- 4.2.6 Result of PM Pole Design
- 4.3 Coil Pole Design
- 4.3.1 Geometric Parameters of Coil
- 4.3.2 Increase Number of Winding Turns
- 4.3.3 Material of Coil Frame
- 4.4 Stator
- 4.5 Spherical Bearing
- 4.6 Summary
- References
- 5 Experimental Investigation
- 5.1 Measurement of PM Rotor Magnetic Field
- 5.1.1 Flux Density Measurement Apparatus
- 5.1.2 Flux Density Data Processing
- 5.1.3 Visualization and Analysis of Experimental Result
- 5.2 Measurement of Actuator Torque Output
- 5.2.1 Experiment on Torque Generated by a Single Coil
- 5.2.2 Experiment on Torque Generated by Multiple Coils
- 5.3 Summary
- References
- 6 Three Degree-of-freedom Optical Orientation Measurement
- 6.1 Introduction
- 6.2 Operating Principle
- 6.3 Algorithm for Computing Rotation Angles
- 6.3.1 Definition of Coordinate Systems
- 6.3.2 Calculation of Tilting Angles
- 6.3.3 Calculation of Spinning Angle
- 6.4 Experimental Measurement
- 6.4.1 Experimental Measurement on Apparatus 1
- 6.4.2 Experimental Measurement on Apparatus 2
- 6.5 Conclusion
- References
- 7 Conclusions
- 7.1 Accomplishments and Contributions
- 7.2 Recommendation for Future Research
- References
- Index.