Robust Hand Gesture Recognition for Robotic Hand Control

This book focuses on light invariant bare hand gesture recognition while there is no restriction on the types of gestures. Observations and results have confirmed that this research work can be used to remotely control a robotic hand using hand gestures. The system developed here is also able to rec...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Chaudhary, Ankit (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Singapore : Springer Singapore : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04533nam a2200505 4500
001 978-981-10-4798-5
003 DE-He213
005 20191029031347.0
007 cr nn 008mamaa
008 170605s2018 si | s |||| 0|eng d
020 |a 9789811047985  |9 978-981-10-4798-5 
024 7 |a 10.1007/978-981-10-4798-5  |2 doi 
040 |d GrThAP 
050 4 |a TJ210.2-211.495 
050 4 |a T59.5 
072 7 |a TJFM1  |2 bicssc 
072 7 |a TEC037000  |2 bisacsh 
072 7 |a TJFM1  |2 thema 
082 0 4 |a 629.892  |2 23 
100 1 |a Chaudhary, Ankit.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Robust Hand Gesture Recognition for Robotic Hand Control  |h [electronic resource] /  |c by Ankit Chaudhary. 
250 |a 1st ed. 2018. 
264 1 |a Singapore :  |b Springer Singapore :  |b Imprint: Springer,  |c 2018. 
300 |a XXI, 96 p. 67 illus., 54 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Chapter 1: Introduction -- Chapter 2: Scientific Goals -- Chapter 3: State of the Art -- Chapter 4: Hand Image Segmentation -- Chapter 5: Light Invariant Hand Gesture Recognition -- Chapter 6: Fingertips Detection -- Chapter 7: Bent Finger's Angles Calculation -- Chapter 8: Both Hands' Angles Calculation -- Chapter 9: Conclusions. 
520 |a This book focuses on light invariant bare hand gesture recognition while there is no restriction on the types of gestures. Observations and results have confirmed that this research work can be used to remotely control a robotic hand using hand gestures. The system developed here is also able to recognize hand gestures in different lighting conditions. The pre-processing is performed by developing an image-cropping algorithm that ensures only the area of interest is included in the segmented image. The segmented image is compared with a predefined gesture set which must be installed in the recognition system. These images are stored and feature vectors are extracted from them. These feature vectors are subsequently presented using an orientation histogram, which provides a view of the edges in the form of frequency. Thereby, if the same gesture is shown twice in different lighting intensities, both repetitions will map to the same gesture in the stored data. The mapping of the segmented image's orientation histogram is firstly done using the Euclidian distance method. Secondly, the supervised neural network is trained for the same, producing better recognition results. An approach to controlling electro-mechanical robotic hands using dynamic hand gestures is also presented using a robot simulator. Such robotic hands have applications in commercial, military or emergency operations where human life cannot be risked. For such applications, an artificial robotic hand is required to perform real-time operations. This robotic hand should be able to move its fingers in the same manner as a human hand. For this purpose, hand geometry parameters are obtained using a webcam and also using KINECT. The parameter detection is direction invariant in both methods. Once the hand parameters are obtained, the fingers' angle information is obtained by performing a geometrical analysis. An artificial neural network is also implemented to calculate the angles. These two methods can be used with only one hand, either right or left. A separate method that is applicable to both hands simultaneously is also developed and fingers angles are calculated. The contents of this book will be useful for researchers and professional engineers working on robotic arm/hand systems. 
650 0 |a Robotics. 
650 0 |a Automation. 
650 0 |a Artificial intelligence. 
650 0 |a Control engineering. 
650 1 4 |a Robotics and Automation.  |0 http://scigraph.springernature.com/things/product-market-codes/T19020 
650 2 4 |a Artificial Intelligence.  |0 http://scigraph.springernature.com/things/product-market-codes/I21000 
650 2 4 |a Control and Systems Theory.  |0 http://scigraph.springernature.com/things/product-market-codes/T19010 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9789811047978 
776 0 8 |i Printed edition:  |z 9789811047992 
776 0 8 |i Printed edition:  |z 9789811352348 
856 4 0 |u https://doi.org/10.1007/978-981-10-4798-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)