Recent Developments in Structure-Preserving Algorithms for Oscillatory Differential Equations

The main theme of this book is recent progress in structure-preserving algorithms for solving initial value problems of oscillatory differential equations arising in a variety of research areas, such as astronomy, theoretical physics, electronics, quantum mechanics and engineering. It systematically...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Wu, Xinyuan (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Wang, Bin (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Singapore : Springer Singapore : Imprint: Springer, 2018.
Έκδοση:1st ed. 2018.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04115nam a2200469 4500
001 978-981-10-9004-2
003 DE-He213
005 20191022071049.0
007 cr nn 008mamaa
008 180419s2018 si | s |||| 0|eng d
020 |a 9789811090042  |9 978-981-10-9004-2 
024 7 |a 10.1007/978-981-10-9004-2  |2 doi 
040 |d GrThAP 
050 4 |a QA9.58 
072 7 |a PBWH  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
072 7 |a PBWH  |2 thema 
082 0 4 |a 511.352  |2 23 
100 1 |a Wu, Xinyuan.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Recent Developments in Structure-Preserving Algorithms for Oscillatory Differential Equations  |h [electronic resource] /  |c by Xinyuan Wu, Bin Wang. 
250 |a 1st ed. 2018. 
264 1 |a Singapore :  |b Springer Singapore :  |b Imprint: Springer,  |c 2018. 
300 |a XV, 345 p. 73 illus., 62 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Functionally fitted continuous finite element methods for oscillatory Hamiltonian system -- Exponential average-vector-field integrator for conservative or dissipative systems -- Exponential Fourier collocation methods for first-order differential Equations -- Symplectic exponential Runge-Kutta methods for solving nonlinear Hamiltonian systems -- High-order symplectic and symmetric composition integrators for multi-frequency oscillatory Hamiltonian systems -- The construction of arbitrary order ERKN integrators via group theory -- Trigonometric collocation methods for multi-frequency and multidimensional oscillatory systems -- A compact tri-colored tree theory for general ERKN methods -- An integral formula adapted to different boundary conditions for arbitrarily high-dimensional nonlinear Klein-Gordon equations -- An energy-preserving and symmetric scheme for nonlinear Hamiltonian wave equations -- Arbitrarily high-order time-stepping schemes for nonlinear Klein-Gordon equations -- An essential extension of the finite-energy condition for ERKN integrators solving nonlinear wave equations -- Index. 
520 |a The main theme of this book is recent progress in structure-preserving algorithms for solving initial value problems of oscillatory differential equations arising in a variety of research areas, such as astronomy, theoretical physics, electronics, quantum mechanics and engineering. It systematically describes the latest advances in the development of structure-preserving integrators for oscillatory differential equations, such as structure-preserving exponential integrators, functionally fitted energy-preserving integrators, exponential Fourier collocation methods, trigonometric collocation methods, and symmetric and arbitrarily high-order time-stepping methods. Most of the material presented here is drawn from the recent literature. Theoretical analysis of the newly developed schemes shows their advantages in the context of structure preservation. All the new methods introduced in this book are proven to be highly effective compared with the well-known codes in the scientific literature. This book also addresses challenging problems at the forefront of modern numerical analysis and presents a wide range of modern tools and techniques. 
650 0 |a Algorithms. 
650 0 |a Computational complexity. 
650 1 4 |a Mathematics of Algorithmic Complexity.  |0 http://scigraph.springernature.com/things/product-market-codes/M13130 
650 2 4 |a Complexity.  |0 http://scigraph.springernature.com/things/product-market-codes/T11022 
700 1 |a Wang, Bin.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9789811090035 
776 0 8 |i Printed edition:  |z 9789811090059 
776 0 8 |i Printed edition:  |z 9789811342967 
856 4 0 |u https://doi.org/10.1007/978-981-10-9004-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)