EMG Signals Characterization in Three States of Contraction by Fuzzy Network and Feature Extraction

Neuro-muscular and musculoskeletal disorders and injuries highly affect the life style and the motion abilities of an individual. This brief highlights a systematic method for detection of the level of muscle power declining in musculoskeletal and Neuro-muscular disorders. The neuro-fuzzy system is...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Mokhlesabadifarahani, Bita (Συγγραφέας), Gunjan, Vinit Kumar (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Singapore : Springer Singapore : Imprint: Springer, 2015.
Σειρά:SpringerBriefs in Applied Sciences and Technology,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02924nam a22005655i 4500
001 978-981-287-320-0
003 DE-He213
005 20151111211341.0
007 cr nn 008mamaa
008 150210s2015 si | s |||| 0|eng d
020 |a 9789812873200  |9 978-981-287-320-0 
024 7 |a 10.1007/978-981-287-320-0  |2 doi 
040 |d GrThAP 
050 4 |a R856-857 
072 7 |a MQW  |2 bicssc 
072 7 |a TEC009000  |2 bisacsh 
082 0 4 |a 610.28  |2 23 
100 1 |a Mokhlesabadifarahani, Bita.  |e author. 
245 1 0 |a EMG Signals Characterization in Three States of Contraction by Fuzzy Network and Feature Extraction  |h [electronic resource] /  |c by Bita Mokhlesabadifarahani, Vinit Kumar Gunjan. 
264 1 |a Singapore :  |b Springer Singapore :  |b Imprint: Springer,  |c 2015. 
300 |a XV, 35 p. 17 illus., 13 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Applied Sciences and Technology,  |x 2191-530X 
505 0 |a Introduction to EMG Technique and Feature Extraction -- Methodology for  working with EMG dataset -- Results -- Conclusions and Inferences of Present Study. 
520 |a Neuro-muscular and musculoskeletal disorders and injuries highly affect the life style and the motion abilities of an individual. This brief highlights a systematic method for detection of the level of muscle power declining in musculoskeletal and Neuro-muscular disorders. The neuro-fuzzy system is trained with 70 percent of the recorded Electromyography (EMG) cut off window and then used for classification and modeling purposes. The neuro-fuzzy classifier is validated in comparison to some other well-known classifiers in classification of the recorded EMG signals with the three states of contractions corresponding to the extracted features. Different structures of the neuro-fuzzy classifier are also comparatively analyzed to find the optimum structure of the classifier used. 
650 0 |a Engineering. 
650 0 |a Forensic science. 
650 0 |a Health informatics. 
650 0 |a Orthopedics. 
650 0 |a Rehabilitation. 
650 0 |a Bioinformatics. 
650 0 |a Biomedical engineering. 
650 1 4 |a Engineering. 
650 2 4 |a Biomedical Engineering. 
650 2 4 |a Orthopedics. 
650 2 4 |a Forensic Science. 
650 2 4 |a Computational Biology/Bioinformatics. 
650 2 4 |a Health Informatics. 
650 2 4 |a Rehabilitation. 
700 1 |a Gunjan, Vinit Kumar.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9789812873194 
830 0 |a SpringerBriefs in Applied Sciences and Technology,  |x 2191-530X 
856 4 0 |u http://dx.doi.org/10.1007/978-981-287-320-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)