GROUP THEORY

Το σύγγραμμα απευθύνεται σε προπτυχιακούς φοιτητές Τμημάτων Μαθηματικών Πανεπιστημίων ημεδαπής. Χρησιμοποιώντας την έννοια τής δράσης επί συνόλου, αποδεικνύονται το Θεώρημα Burnside, τα κλασικά Θεωρήματα Sylow και εφαρμογές τους. (Επί παραδείγματι, η απλότητα τής εναλλάσσουσας ομάδας An, για n ίσο ή...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Μαρμαρίδης, Νικόλαος Θεοδόσιος, Marmaridis, Nikolaos Theodosios
Μορφή: 1
Γλώσσα:Greek
Έκδοση: 2016
Θέματα:
Διαθέσιμο Online:http://dx.doi.org/10.57713/kallipos-671
http://repository.kallipos.gr/handle/11419/3317
Περιγραφή
Περίληψη:Το σύγγραμμα απευθύνεται σε προπτυχιακούς φοιτητές Τμημάτων Μαθηματικών Πανεπιστημίων ημεδαπής. Χρησιμοποιώντας την έννοια τής δράσης επί συνόλου, αποδεικνύονται το Θεώρημα Burnside, τα κλασικά Θεωρήματα Sylow και εφαρμογές τους. (Επί παραδείγματι, η απλότητα τής εναλλάσσουσας ομάδας An, για n ίσο ή μεγαλύτερο από 5). Παρουσιάζεται η Εξίσωση των Κλάσεων και ως εφαρμογή της προσδιορίζεται η μεγαλύτερη τιμή τής πιθανότητας ώστε να μετατίθενται δύο στοιχεία μιας μη αβελιανής ομάδας τάξης n. Εισάγοντας την έννοια τού ευθέως γινομένου ταξινομούνται οι πεπερασμένες αβελιανές ομάδες. Αναπτύσσεται η θεωρία Jordan Hoelder  και ως εφαρμογή της παρουσιάζονται έννοιες από τη θεωρία των επιλύσιμων ομάδων. Αποδεικνύεται ενδελεχώς ότι κάθε ομάδα τάξης μικρότερης από 60 είναι επιλύσιμη. Το σύγγραμμα διαπραγματεύεται την έννοια τής επέκτασης ομάδας, την ειδική περίπτωση του ημιευθέως γινομένου και ως εφαρμογή ότι μια ομάδα τάξης n είναι κυκλική αν, και μόνο αν οι αριθμοί n και φ(n) (συνάρτηση Euler) είναι σχετικώς πρώτοι. Επίσης ένα κεφάλαιο θα αναφέρεται στη στοιχειώδη θεωρία ομάδων με έμφαση στη θεωρία των συμμετρικών ομάδων Sn. Τέλος σε ένα παράρτημα θα παρουσιαστούν ιστορικά στοιχεία τής ταξινόμησης των περασμένων απλών ομάδων.