Application of complex path-independent integrals to locating circular holes and inclusions in classical plane elasticity

We propose an elementary method, based on complex path-independent integrals and the classical complex potentials of Kolosov–Muskhelishvili, for the location of the position of the centre and the determination of the radius of circular holes and inclusions of a different material (either simply inse...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Ioakimidis, Nikolaos
Άλλοι συγγραφείς: Ιωακειμίδης, Νικόλαος
Μορφή: Technical Report
Γλώσσα:English
Έκδοση: 2018
Θέματα:
Διαθέσιμο Online:http://hdl.handle.net/10889/11161
Περιγραφή
Περίληψη:We propose an elementary method, based on complex path-independent integrals and the classical complex potentials of Kolosov–Muskhelishvili, for the location of the position of the centre and the determination of the radius of circular holes and inclusions of a different material (either simply inserted or attached) in an infinite plane isotropic elastic medium. In practice, the method of pseudocaustics can be successfully used as the related experimental method. Generalizations of the present results follow trivially.