Μέθοδοι διάγνωσης με βάση προηγμένες τεχνικές επεξεργασίας και ταξινόμησης δεδομένων. Εφαρμογές στη μαιευτική

Αντικείμενο της διατριβής ήταν η ανάπτυξη υπολογιστικών μεθόδων διάγνωσης και εκτίμησης της κατάστασης της υγείας του εμβρύου. Οι προτεινόμενες μεθοδολογίες αναλύουν και εξάγουν πληροφορίες από το σήμα της ΕΚΣ καθώς το συγκεκριμένο σήμα αποτελεί ένα από τα λιγοστά διαθέσιμα εργαλεία για την εκτίμηση...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Γεωργούλας, Γεώργιος Κ.
Άλλοι συγγραφείς: Γρουμπός, Πέτρος
Μορφή: Thesis
Γλώσσα:Greek
Έκδοση: 2009
Θέματα:
Διαθέσιμο Online:http://nemertes.lis.upatras.gr/jspui/handle/10889/1346
id nemertes-10889-1346
record_format dspace
institution UPatras
collection Nemertes
language Greek
topic Προηγμένες τεχνικές επεξεργασίας δεδομένων
Προηγμένες τεχνικές ταξινόμησης δεδομένων
Εμβρυϊκή καρδιακή συχνότητα (ΕΚΣ)
Ανάλυση σε ανεξάρτητες συνιστώσες
Μετασχηματισμός κυματιδίου
Νευρωνικά δίκτυα κυματιδίου
Μηχανές διανυσμάτων υποστήριξης
Νευρωνικά δίκτυα
Υποξία
Εξελικτικοί αλγόριθμοι
Σύστημα λήψης απόφασης στην ιατρική
Advanced data processing techniques
Advanced data classification techniques
Fetal heart rate (FHR)
Independent component analysis (ICA)
Wavelet transform
Wavelet neural networks
Support vector machines
Neural networks
Hypoxia
Evolutionary algorithms
Decision support system in medicine
618.326 100 285
spellingShingle Προηγμένες τεχνικές επεξεργασίας δεδομένων
Προηγμένες τεχνικές ταξινόμησης δεδομένων
Εμβρυϊκή καρδιακή συχνότητα (ΕΚΣ)
Ανάλυση σε ανεξάρτητες συνιστώσες
Μετασχηματισμός κυματιδίου
Νευρωνικά δίκτυα κυματιδίου
Μηχανές διανυσμάτων υποστήριξης
Νευρωνικά δίκτυα
Υποξία
Εξελικτικοί αλγόριθμοι
Σύστημα λήψης απόφασης στην ιατρική
Advanced data processing techniques
Advanced data classification techniques
Fetal heart rate (FHR)
Independent component analysis (ICA)
Wavelet transform
Wavelet neural networks
Support vector machines
Neural networks
Hypoxia
Evolutionary algorithms
Decision support system in medicine
618.326 100 285
Γεωργούλας, Γεώργιος Κ.
Μέθοδοι διάγνωσης με βάση προηγμένες τεχνικές επεξεργασίας και ταξινόμησης δεδομένων. Εφαρμογές στη μαιευτική
description Αντικείμενο της διατριβής ήταν η ανάπτυξη υπολογιστικών μεθόδων διάγνωσης και εκτίμησης της κατάστασης της υγείας του εμβρύου. Οι προτεινόμενες μεθοδολογίες αναλύουν και εξάγουν πληροφορίες από το σήμα της ΕΚΣ καθώς το συγκεκριμένο σήμα αποτελεί ένα από τα λιγοστά διαθέσιμα εργαλεία για την εκτίμηση της οξυγόνωσης του εμβρύου και της αξιολόγησης της κατάστασης της υγείας του κατά τη διάρκεια του τοκετού. Για την αξιολόγηση των μεθόδων εξετάστηκε η συσχέτιση της Εμβρυϊκής Καρδιακής Συχνότητας (ΕΚΣ) με βραχυπρόθεσμες αξιόπιστες ενδείξεις για την κατάσταση του εμβρύου και πιο συγκεκριμένα χρησιμοποιήθηκε η συσχέτιση της τιμής του pH του αίματος του εμβρύου η οποία αποτελεί μια έμμεση ένδειξη για την ανάπτυξη υποξίας κατά τη διάρκεια του τοκετού. Στα πλαίσια της διατριβής χρησιμοποιήθηκε για πρώτη φορά η μέθοδος της ανάλυσης σε ανεξάρτητες συνιστώσες για την εξαγωγή χαρακτηριστικών από το σήμα της ΕΚΣ. Επίσης προτάθηκαν και χρησιμοποιήθηκαν Κρυφά Μοντέλα Markov σε μια προσπάθεια να «συλληφθεί» η χρονική εξέλιξη του φαινομένου της μεταβολής της κατάστασης του εμβρύου. Επιπλέον προτάθηκαν νέα χαρακτηριστικά εξαγόμενα με τη χρήση του Διακριτού Μετασχηματισμού Κυματιδίου. Με χρήση μιας υβριδική μέθοδος, που βασίζεται στη χρήση εξελικτικής γραμματικής «κατασκευάστηκαν» νέα χαρακτηριστικά παραγόμενα από τα χαρακτηριστικά που είχαν ήδη εξαχθεί με συμβατικές μεθόδους. Επιπρόσθετα στα πλαίσια της διατριβής χρησιμοποιήθηκαν για πρώτη φορά (και η μόνη μέχρι στιγμής) μηχανές διανυσμάτων υποστήριξης για την ταξινόμηση και προτάθηκε και χρησιμοποιήθηκε για πρώτη φορά η μέθοδος βελτιστοποίησης με σμήνος σωματιδίων για τη ρύθμιση των παραμέτρων τους. Τέλος προτάθηκε και χρησιμοποιήθηκε για πρώτη φορά η μέθοδος βελτιστοποίησης με σμήνος σωματιδίων για την εκπαίδευση μιας νέας οικογένειας νευρωνικών δικτύων, των νευρωνικών δικτύων κυματιδίου. Μέσα από τα πειράματα τα οποία διεξήγαμε καταφέραμε να δείξουμε ότι τα δεδομένα της ΕΚΣ διαθέτουν σημαντική πληροφορία η οποία με τη χρήση κατάλληλων προηγμένων μεθόδων επεξεργασίας και ταξινόμησης μπορεί να συσχετιστεί με την τιμή του pH του εμβρύου, κάτι το οποίο θεωρούνταν ουτοπικό στη δεκαετία του 90.
author2 Γρουμπός, Πέτρος
author_facet Γρουμπός, Πέτρος
Γεωργούλας, Γεώργιος Κ.
format Thesis
author Γεωργούλας, Γεώργιος Κ.
author_sort Γεωργούλας, Γεώργιος Κ.
title Μέθοδοι διάγνωσης με βάση προηγμένες τεχνικές επεξεργασίας και ταξινόμησης δεδομένων. Εφαρμογές στη μαιευτική
title_short Μέθοδοι διάγνωσης με βάση προηγμένες τεχνικές επεξεργασίας και ταξινόμησης δεδομένων. Εφαρμογές στη μαιευτική
title_full Μέθοδοι διάγνωσης με βάση προηγμένες τεχνικές επεξεργασίας και ταξινόμησης δεδομένων. Εφαρμογές στη μαιευτική
title_fullStr Μέθοδοι διάγνωσης με βάση προηγμένες τεχνικές επεξεργασίας και ταξινόμησης δεδομένων. Εφαρμογές στη μαιευτική
title_full_unstemmed Μέθοδοι διάγνωσης με βάση προηγμένες τεχνικές επεξεργασίας και ταξινόμησης δεδομένων. Εφαρμογές στη μαιευτική
title_sort μέθοδοι διάγνωσης με βάση προηγμένες τεχνικές επεξεργασίας και ταξινόμησης δεδομένων. εφαρμογές στη μαιευτική
publishDate 2009
url http://nemertes.lis.upatras.gr/jspui/handle/10889/1346
work_keys_str_mv AT geōrgoulasgeōrgiosk methodoidiagnōsēsmebasēproēgmenestechnikesepexergasiaskaitaxinomēsēsdedomenōnepharmogesstēmaieutikē
AT geōrgoulasgeōrgiosk advanceddataprocessingandclassificationtechniquesfordiagnosismethodsapplicationinobstetrics
_version_ 1771297330756059136
spelling nemertes-10889-13462022-09-05T20:34:04Z Μέθοδοι διάγνωσης με βάση προηγμένες τεχνικές επεξεργασίας και ταξινόμησης δεδομένων. Εφαρμογές στη μαιευτική Advanced data processing and classification techniques for diagnosis methods. Application in obstetrics Γεωργούλας, Γεώργιος Κ. Γρουμπός, Πέτρος Γρουμπός, Πέτρος Τζες, Αντώνιος Κούσουλας, Νικόλαος Στουραΐτης, Αθανάσιος Λυγερός, Ιωάννης Νικηφορίδης, Γεώργιος Δερματάς, Ευάγγελος Προηγμένες τεχνικές επεξεργασίας δεδομένων Προηγμένες τεχνικές ταξινόμησης δεδομένων Εμβρυϊκή καρδιακή συχνότητα (ΕΚΣ) Ανάλυση σε ανεξάρτητες συνιστώσες Μετασχηματισμός κυματιδίου Νευρωνικά δίκτυα κυματιδίου Μηχανές διανυσμάτων υποστήριξης Νευρωνικά δίκτυα Υποξία Εξελικτικοί αλγόριθμοι Σύστημα λήψης απόφασης στην ιατρική Advanced data processing techniques Advanced data classification techniques Fetal heart rate (FHR) Independent component analysis (ICA) Wavelet transform Wavelet neural networks Support vector machines Neural networks Hypoxia Evolutionary algorithms Decision support system in medicine 618.326 100 285 Αντικείμενο της διατριβής ήταν η ανάπτυξη υπολογιστικών μεθόδων διάγνωσης και εκτίμησης της κατάστασης της υγείας του εμβρύου. Οι προτεινόμενες μεθοδολογίες αναλύουν και εξάγουν πληροφορίες από το σήμα της ΕΚΣ καθώς το συγκεκριμένο σήμα αποτελεί ένα από τα λιγοστά διαθέσιμα εργαλεία για την εκτίμηση της οξυγόνωσης του εμβρύου και της αξιολόγησης της κατάστασης της υγείας του κατά τη διάρκεια του τοκετού. Για την αξιολόγηση των μεθόδων εξετάστηκε η συσχέτιση της Εμβρυϊκής Καρδιακής Συχνότητας (ΕΚΣ) με βραχυπρόθεσμες αξιόπιστες ενδείξεις για την κατάσταση του εμβρύου και πιο συγκεκριμένα χρησιμοποιήθηκε η συσχέτιση της τιμής του pH του αίματος του εμβρύου η οποία αποτελεί μια έμμεση ένδειξη για την ανάπτυξη υποξίας κατά τη διάρκεια του τοκετού. Στα πλαίσια της διατριβής χρησιμοποιήθηκε για πρώτη φορά η μέθοδος της ανάλυσης σε ανεξάρτητες συνιστώσες για την εξαγωγή χαρακτηριστικών από το σήμα της ΕΚΣ. Επίσης προτάθηκαν και χρησιμοποιήθηκαν Κρυφά Μοντέλα Markov σε μια προσπάθεια να «συλληφθεί» η χρονική εξέλιξη του φαινομένου της μεταβολής της κατάστασης του εμβρύου. Επιπλέον προτάθηκαν νέα χαρακτηριστικά εξαγόμενα με τη χρήση του Διακριτού Μετασχηματισμού Κυματιδίου. Με χρήση μιας υβριδική μέθοδος, που βασίζεται στη χρήση εξελικτικής γραμματικής «κατασκευάστηκαν» νέα χαρακτηριστικά παραγόμενα από τα χαρακτηριστικά που είχαν ήδη εξαχθεί με συμβατικές μεθόδους. Επιπρόσθετα στα πλαίσια της διατριβής χρησιμοποιήθηκαν για πρώτη φορά (και η μόνη μέχρι στιγμής) μηχανές διανυσμάτων υποστήριξης για την ταξινόμηση και προτάθηκε και χρησιμοποιήθηκε για πρώτη φορά η μέθοδος βελτιστοποίησης με σμήνος σωματιδίων για τη ρύθμιση των παραμέτρων τους. Τέλος προτάθηκε και χρησιμοποιήθηκε για πρώτη φορά η μέθοδος βελτιστοποίησης με σμήνος σωματιδίων για την εκπαίδευση μιας νέας οικογένειας νευρωνικών δικτύων, των νευρωνικών δικτύων κυματιδίου. Μέσα από τα πειράματα τα οποία διεξήγαμε καταφέραμε να δείξουμε ότι τα δεδομένα της ΕΚΣ διαθέτουν σημαντική πληροφορία η οποία με τη χρήση κατάλληλων προηγμένων μεθόδων επεξεργασίας και ταξινόμησης μπορεί να συσχετιστεί με την τιμή του pH του εμβρύου, κάτι το οποίο θεωρούνταν ουτοπικό στη δεκαετία του 90. This Dissertation dealt with the development of computational methods for the diagnosis and estimation of fetal condition. The proposed methods analyzed and extracted information from the Fetal Heart Rate (FHR) signal, since this is one of the few available tools for the estimation of fetal oxygenation and the assessment of fetal condition during labor. For the evaluation of the proposed methods the correlation of the FHR signal with short term indices were employed and to be more specific, its correlation with the pH values of fetal blood, which is an indirect sign of the development of fetal hypoxia during labor. In the context of this Dissertation, Independent Component Analysis (ICA) for feature extraction from the FHR signal was used for the first time. Moreover we used Hidden Markov Models in an attempt to “capture” the evolution in time of the fetal condition. Furthermore, new features based on the Discrete Wavelet Transform were proposed and used. Using a new hybrid method based on grammatical evolution new features were constructed based on already extracted features by conventional methods. Moreover, for the first (and only) time, Support Vector Machine (SVM) classifiers were employed in the field of FHR processing and the Particle Swarm Optimization (PSO) method was proposed for tuning their parameters. Finally, a new family of neural networks, the Wavelet Neural Networks (WNN) was proposed and used, trained using the PSO method. By conducting a number of experiments we managed to show that the FHR signal conveys valuable information, which by the use of advanced data processing and classification techniques can be associated with fetal pH, something which was not regarded feasible during the 90’s. 2009-02-13T08:57:40Z 2009-02-13T08:57:40Z 2006 2009-02-13T08:57:40Z Thesis http://nemertes.lis.upatras.gr/jspui/handle/10889/1346 gr Η ΒΥΠ διαθέτει αντίτυπο της διατριβής σε έντυπη μορφή στο βιβλιοστάσιο διδακτορικών διατριβών που βρίσκεται στο ισόγειο του κτιρίου της. 0 application/pdf