Classification of extra virgin olive oils via LIBS technique using ns laser pulses combined with machine learning algorithms
In the present work, 78 extra virgin olive oil samples (EVOOs) collected from different places of Greece, specifically from the areas of Crete, Peloponnese, Lesvos and Ionian islands, were studied by means of a laser-based technique called Laser-Induced Breakdown Spectroscopy (LIBS), assisted by wel...
Κύριος συγγραφέας: | |
---|---|
Άλλοι συγγραφείς: | |
Γλώσσα: | English |
Έκδοση: |
2021
|
Θέματα: | |
Διαθέσιμο Online: | http://hdl.handle.net/10889/15111 |
id |
nemertes-10889-15111 |
---|---|
record_format |
dspace |
spelling |
nemertes-10889-151112022-09-05T05:38:49Z Classification of extra virgin olive oils via LIBS technique using ns laser pulses combined with machine learning algorithms Κατηγοριοποίηση εξτρά παρθένων ελαιολάδων μεσω της τεχνικής LIBS και την χρήση παλμών διάρκειας ns σε συνδυασμό με αλγορίθμους μηχανικής εκμάθησης Γυφτοκώστας, Νικόλαος Gyftokostas, Nikolaos LIBS Laser induced breakdown spectroscopy Machine learning Olive oil classification In the present work, 78 extra virgin olive oil samples (EVOOs) collected from different places of Greece, specifically from the areas of Crete, Peloponnese, Lesvos and Ionian islands, were studied by means of a laser-based technique called Laser-Induced Breakdown Spectroscopy (LIBS), assisted by well-known machine learning algorithms, such as, Principal Components Analysis (PCA), Linear Discriminant Analysis (LDA) and Support Vector Machines (SVMs), aiming to classify/discriminate them in terms of their geographical origin. The classification results obtained demonstrate nicely the potential of the combination of LIBS technique and machine learning algorithms, paving the way towards the utilization of LIBS technique for classification/discrimination of olive oils and eventually for other types of agricultural and edible products. Στην παρούσα μεταπτυχιακή εργασία, 78 δείγματα εξαιρετικά παρθένου ελαιόλαδου, τα οποία συλλέχθηκαν από διάφορες περιοχές της Ελλάδας και πιο συγκεκριμένα από την Κρήτη, την Πελοπόννησο, την Λέσβο και τα Ιόνια νησιά, μελετήθηκαν με την βοήθεια της φασματοσκοπικής τεχνικής LIBS σε συνδυασμό με αλγορίθμους μηχανικής εκμάθησης, όπως η Ανάλυση Κύριων Συνιστωσών (PCA), η Γραμμική Διακριτική Ανάλυση (LDA) και οι Μηχανές Διανυσμάτων Υποστήριξης (SVC) με σκοπό τον διαχωρισμό τους ως προς τη γεωγραφικής τους προέλευσης. Τα εξαιρετικά αποτελέσματα στα οποία κατέληξε αυτή η εργασία αναδεικνύουν τις δυνατότητες του συνδυασμού της τεχνικής LIBS με τις τεχνικές μηχανικής εκμάθησης, ανοίγοντας τον δρόμο για την περαιτέρω εφαρμογή της τεχνικής αυτής για την ταξινόμηση ελαιόλαδων και άλλων γεωργικών προϊόντων και τροφίμων. 2021-07-23T08:14:06Z 2021-07-23T08:14:06Z 2020-05-25 http://hdl.handle.net/10889/15111 en application/pdf |
institution |
UPatras |
collection |
Nemertes |
language |
English |
topic |
LIBS Laser induced breakdown spectroscopy Machine learning Olive oil classification |
spellingShingle |
LIBS Laser induced breakdown spectroscopy Machine learning Olive oil classification Γυφτοκώστας, Νικόλαος Classification of extra virgin olive oils via LIBS technique using ns laser pulses combined with machine learning algorithms |
description |
In the present work, 78 extra virgin olive oil samples (EVOOs) collected from different places of Greece, specifically from the areas of Crete, Peloponnese, Lesvos and Ionian islands, were studied by means of a laser-based technique called Laser-Induced Breakdown Spectroscopy (LIBS), assisted by well-known machine learning algorithms, such as, Principal Components Analysis (PCA), Linear Discriminant Analysis (LDA) and Support Vector Machines (SVMs), aiming to classify/discriminate them in terms of their geographical origin. The classification results obtained demonstrate nicely the potential of the combination of LIBS technique and machine learning algorithms, paving the way towards the utilization of LIBS technique for classification/discrimination of olive oils and eventually for other types of agricultural and edible products. |
author2 |
Gyftokostas, Nikolaos |
author_facet |
Gyftokostas, Nikolaos Γυφτοκώστας, Νικόλαος |
author |
Γυφτοκώστας, Νικόλαος |
author_sort |
Γυφτοκώστας, Νικόλαος |
title |
Classification of extra virgin olive oils via LIBS technique using ns laser pulses combined with machine learning algorithms |
title_short |
Classification of extra virgin olive oils via LIBS technique using ns laser pulses combined with machine learning algorithms |
title_full |
Classification of extra virgin olive oils via LIBS technique using ns laser pulses combined with machine learning algorithms |
title_fullStr |
Classification of extra virgin olive oils via LIBS technique using ns laser pulses combined with machine learning algorithms |
title_full_unstemmed |
Classification of extra virgin olive oils via LIBS technique using ns laser pulses combined with machine learning algorithms |
title_sort |
classification of extra virgin olive oils via libs technique using ns laser pulses combined with machine learning algorithms |
publishDate |
2021 |
url |
http://hdl.handle.net/10889/15111 |
work_keys_str_mv |
AT gyphtokōstasnikolaos classificationofextravirginoliveoilsvialibstechniqueusingnslaserpulsescombinedwithmachinelearningalgorithms AT gyphtokōstasnikolaos katēgoriopoiēsēextraparthenōnelaioladōnmesōtēstechnikēslibskaitēnchrēsēpalmōndiarkeiasnssesyndyasmomealgorithmousmēchanikēsekmathēsēs |
_version_ |
1771297152206635008 |