Εισαγωγή στη συνομολογία De Rham

Στην παρούσα εργασία πραγματοποιούμε μία εισαγωγή στη συνομολογία De Rham, με σκοπό τη μελέτη των συνομολογιών του R και του μοναδιαίου κύκλου S^1. Μέσω της θεωρίας που κατασκευάζουμε, αποδεικνύουμε ότι όταν υπάρχει αμφιδιαφόριση μεταξύ δύο πολλαπλοτήτων μπορούμε να αποφανθούμε εάν οι συνομολογίε...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Παπαγεωργίου, Ζωή
Άλλοι συγγραφείς: Papageorgiou, Zoi
Γλώσσα:Greek
Έκδοση: 2021
Θέματα:
Διαθέσιμο Online:http://hdl.handle.net/10889/15690
id nemertes-10889-15690
record_format dspace
spelling nemertes-10889-156902022-09-05T09:40:19Z Εισαγωγή στη συνομολογία De Rham An introduction to De Rham cohomology Παπαγεωργίου, Ζωή Papageorgiou, Zoi Συνομολογία De Rham Ακολουθία Mayer-Vietoris Σύμπλοκο De Rham De Rham cohomology Mayer-Vietoris sequence De Rham complex Στην παρούσα εργασία πραγματοποιούμε μία εισαγωγή στη συνομολογία De Rham, με σκοπό τη μελέτη των συνομολογιών του R και του μοναδιαίου κύκλου S^1. Μέσω της θεωρίας που κατασκευάζουμε, αποδεικνύουμε ότι όταν υπάρχει αμφιδιαφόριση μεταξύ δύο πολλαπλοτήτων μπορούμε να αποφανθούμε εάν οι συνομολογίες De Rham αυτών είναι ισόμορφες. Προκύπτουν επομένως σπουδαία αποτελέσματα μεταξύ των αντικειμένων διαφορετικών κατηγοριών. 2021-12-20T06:52:10Z 2021-12-20T06:52:10Z 2021-11-20 http://hdl.handle.net/10889/15690 gr application/pdf
institution UPatras
collection Nemertes
language Greek
topic Συνομολογία De Rham
Ακολουθία Mayer-Vietoris
Σύμπλοκο De Rham
De Rham cohomology
Mayer-Vietoris sequence
De Rham complex
spellingShingle Συνομολογία De Rham
Ακολουθία Mayer-Vietoris
Σύμπλοκο De Rham
De Rham cohomology
Mayer-Vietoris sequence
De Rham complex
Παπαγεωργίου, Ζωή
Εισαγωγή στη συνομολογία De Rham
description Στην παρούσα εργασία πραγματοποιούμε μία εισαγωγή στη συνομολογία De Rham, με σκοπό τη μελέτη των συνομολογιών του R και του μοναδιαίου κύκλου S^1. Μέσω της θεωρίας που κατασκευάζουμε, αποδεικνύουμε ότι όταν υπάρχει αμφιδιαφόριση μεταξύ δύο πολλαπλοτήτων μπορούμε να αποφανθούμε εάν οι συνομολογίες De Rham αυτών είναι ισόμορφες. Προκύπτουν επομένως σπουδαία αποτελέσματα μεταξύ των αντικειμένων διαφορετικών κατηγοριών.
author2 Papageorgiou, Zoi
author_facet Papageorgiou, Zoi
Παπαγεωργίου, Ζωή
author Παπαγεωργίου, Ζωή
author_sort Παπαγεωργίου, Ζωή
title Εισαγωγή στη συνομολογία De Rham
title_short Εισαγωγή στη συνομολογία De Rham
title_full Εισαγωγή στη συνομολογία De Rham
title_fullStr Εισαγωγή στη συνομολογία De Rham
title_full_unstemmed Εισαγωγή στη συνομολογία De Rham
title_sort εισαγωγή στη συνομολογία de rham
publishDate 2021
url http://hdl.handle.net/10889/15690
work_keys_str_mv AT papageōrgiouzōē eisagōgēstēsynomologiaderham
AT papageōrgiouzōē anintroductiontoderhamcohomology
_version_ 1771297183321030656