Βιολογική ασβεστοποίηση φυσικών και τεχνητών ιστών

Κατά την επαφή επιφανειών, όπως οι βαλβίδες καρδιάς ή και άλλοι ιστοί, με βιολογικά υγρά, υπό προϋποθέσεις, εναποτίθενται άλατα φωσφορικού ασβεστίου, λόγω του υφιστάμενου υπερκορεσμού με αποτέλεσμα τη μείωση της λειτουργικότητάς τους. Οι αυξημένες περιπτώσεις ασβεστοποίησης αορτικών αλλά και βιοπροσ...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Ροκίδη, Σταματία
Άλλοι συγγραφείς: Κουτσούκος, Πέτρος
Μορφή: Thesis
Γλώσσα:Greek
Έκδοση: 2012
Θέματα:
Διαθέσιμο Online:http://hdl.handle.net/10889/5071
Περιγραφή
Περίληψη:Κατά την επαφή επιφανειών, όπως οι βαλβίδες καρδιάς ή και άλλοι ιστοί, με βιολογικά υγρά, υπό προϋποθέσεις, εναποτίθενται άλατα φωσφορικού ασβεστίου, λόγω του υφιστάμενου υπερκορεσμού με αποτέλεσμα τη μείωση της λειτουργικότητάς τους. Οι αυξημένες περιπτώσεις ασβεστοποίησης αορτικών αλλά και βιοπροσθετικών βαλβίδων καρδιάς, έχει καταστήσει επιτακτική ανάγκη τη μελέτη και τη κατανόηση του μηχανισμού του σχηματισμού των εναποθέσεων. Στην παρούσα διατριβή, έγινε φυσικοχημικός χαρακτηρισμός παθολογικών εναποθέσεων που απομονώθηκαν από ανθρώπινες φυσικές και βιοπροσθετικές βαλβίδες καρδιάς. Ο χαρακτηρισμός έδειξε ότι οι εναποθέσεις αποτελούνται από κρυσταλλικές φάσεις φωσφορικού ασβεστίου. Έγινε ταυτοποίηση της κρυσταλλικής φάσης που είχε εναποτεθεί στις φυσικές και βιοπροσθετικές βαλβίδες ασθενών με χρήση αναλυτικών μεθόδων (XRD, FT-IR, SEM) και συγκρίθηκαν τα αποτελέσματα. Η μορφολογική εξέταση έδειξε κυρίως την παρουσία απατιτικών (υδροξυαπατίτης με υποκαταστάσεις ανθρακικών ιόντων και ιόντων νατρίου) πρισματικών μικροκρυστάλλων. Επίσης, ταυτοποιήθηκε η παρουσία του θερμοδυναμικά ασταθέστερου φωσφορικού οκτασβεστίου (OCP). Η χημική σύσταση των εναποθέσεων στις ασβεστοποιημένες βαλβίδες ασθενών προσδιορίστηκε διαλύοντας συγκεκριμένη ποσότητα στερεού σε διάλυμα HCl 0.1Ν. Έγινε ανάλυση ιόντων ασβεστίου, νατρίου, μαγνησίου με ατομική απορρόφηση και φωσφορικών ιόντων φασματοφωτομετρικά. Οι λόγοι των γραμμομοριακών συγκεντρώσεων Ca/P των στερεών υπολογίστηκαν από τη χημική ανάλυση. Οι γραμμομοριακοί λόγοι των βιοπροσθετικών βαλβίδων βρέθηκαν Ca/P~1.55 ± 0.25, ενώ οι γραμμομοριακοί λόγοι των φυσικών βαλβίδων βρέθηκαν Ca/P ~ 1.80 ± 0.20. Στα πλαίσια της εκπόνησης της παρούσας διατριβής, μελετήθηκε η κινητική της ασβεστοποίησης in vitro σε χοίρειες αορτικές βαλβίδες καρδιάς (γλωχίνες & τοιχώματα) και σε βόειο περικάρδιο. Έγινε μελέτη του σχηματισμού των εναποθέσεων φωσφορικού ασβεστίου σε υπέρκορα διαλύματά του. Όλα τα πειράματα στην παρούσα εργασία έγιναν σε θερμοκρασία 37 οC, pH 7.4 ± 0.1 και ιοντική ισχύ 0.15 Μ ρυθμισμένη με ΝaCl. Για την μέτρηση του ρυθμού κρυσταλλικής ανάπτυξης και άλλων παραμέτρων όπως ο χρόνος επαγωγής, η μορφολογία και η στοιχειομετρική σύσταση των σχηματιζόμενων κρυστάλλων χρησιμοποιήθηκε η μέθοδος του σταθερού υπερκορεσμού (σταθερή σύσταση υπέρκορων διαλυμάτων). O ρυθμός κρυστάλλωσης του φωσφορικού οκτασβεστίου (Ca4H(PO4)3•2.5H2O, OCP) στις γλωχίνες βρέθηκε ότι ήταν μεγαλύτερος σε σύγκριση με τον αντίστοιχο ρυθμό σχηματισμού του ιδίου άλατος στα αορτικά τοιχώματα και στο βόειο περικάρδιο. Η πρώτης τάξεως εξάρτηση του ρυθμού κρυστάλλωσης από τον σχετικό υπερκορεσμό έδειξε ότι το καθορίζον την ταχύτητα στάδιο είναι η επιφανειακή διάχυση. Η κρυσταλλική φάση που σχηματίσθηκε με ετερογενή πυρηνογένεση στους ιστούς ταυτοποιήθηκε με τη βοήθεια αναλυτικών μεθόδων όπως η περίθλαση ακτίνων Χ (XRD) και η ηλεκτρονική μικροσκοπία σάρωσης (SEM). Η μορφολογική εξέταση των εναποθέσεων στους ιστούς έδειξε τον σχηματισμό πλακoειδών και φυλλόμορφων κρυστάλλων φωσφορικού οκτασβεστίου (OCP) καθώς και πρισματικών μικροκρυστάλλων του θερμοδυναμικά σταθερότερου υδροξυαπατίτη (Ca5(PO4)3OH, HAP), ο σχηματισμός των οποίων αποδόθηκε στην υδρόλυση του OCP. Η σχέση υποστρώματος (ιστών) και της κρυσταλλικής φάσης η οποία κρυσταλλώθηκε στην επιφάνειά τους, διερευνήθηκε και με τη μελέτη του ηλεκτροστατικού δυναμικού των επιφανειών. Οι αντίστοιχες μετρήσεις έγιναν με τη μέθοδο του δυναμικού ροής (streaming potential) σε ειδική κυψελλίδα η οποία κατασκευάσθηκε για τον σκοπό αυτό. Στις μετρήσεις που έγιναν, οι ιστοί, τόσο άνευ αλλά και με εναποθέσεις φωσφορικού ασβεστίου, αποτέλεσαν την σταθερή φάση ενώ κινουμένη φάση ήταν ηλεκτρολυτικό διάλυμα ΚΝΟ3 ή NaCl. Πραγματοποιήθηκαν για πρώτη φορά σε συστήματα αυτού του είδους, μετρήσεις δυναμικού ροής και υπολογίσθηκαν οι τιμές των αντιστοίχων επιφανειακών δυναμικών (δυναμικά ζ) σε ιστούς, προ και μετά την ασβεστοποίησή τους με άλατα του φωσφορικού ασβεστίου. Η αύξηση της ιονικής ισχύος είχε ως αποτέλεσμα τη μείωση του δυναμικού επιφάνειας ιστών που εξετάστηκαν. Το δυναμικό ροής ήταν ανάλογο της εφαρμοζόμενης πίεσης και από τα διαγράμματα δυναμικού ροής-πίεσης συμπεραίνεται ότι η επιφάνεια των ιστών (περικαρδίου και γλωχίνων) έχει αρνητικό επιφανειακό φορτίο ενώ ασβεστοποίηση των ιστών αυτών έδωσε αρνητικότερες τιμές του ζ δυναμικού τους. Με δεδομένο ότι στην τιμή του pH ισορροπίας που έγιναν οι μετρήσεις, τόσο η επιφάνεια του υποστρώματος όσο και η κρυσταλλική φάση έχουν μικρό αρνητικό φορτίο και δεν φαίνεται οι ηλεκτροστατικές δυνάμεις κρυστάλλων-υποστρωμάτων που εξετάσθηκαν να παίζουν σημαντικό ρόλο. Οι μετρήσεις που έγιναν σε υψηλές τιμές της ιοντικής ισχύος, έδειξαν αύξηση του αρνητικού επιφανειακού φορτίου για το σύνθετο υλικό υπόστρωμα-ΗΑΡ. Η συνάφεια υποστρώματος-κρυσταλλικής φάσης είναι πιθανώς δομικής φύσης. Οι συνεχώς αυξανόμενες απαιτήσεις για την παρασκευή βιοϋλικών έχουν ως αποτέλεσμα το συνεχώς αυξανόμενο ενδιαφέρον για τη σύνθεση και τη μελέτη βιοτσιμέντων, στα συστατικά των οποίων περιλαμβάνονται άλατα φωσφορικού ασβεστίου ή και ανθρακικού ασβεστίου. Tα βιοτσιμέντα έχουν πολλαπλές βιο-ιατρικές εφαρμογές λόγω της δυνατότητας απορρόφησης ή και τροποποίησης με την ενσωμάτωσή τους στα οστά. Μεταξύ των κρυσταλλικών φάσεων του φωσφορικού ασβεστίου, η θερμοδυναμικά σταθερότερη είναι ο HAP, ο οποίος είναι βασικό ανόργανο συστατικό των σκληρών ιστών των ανώτερων θηλαστικών και αποτελεί ένα πολύ καλό βιοσυμβατό υλικό. Παρασκευάστηκαν απατιτικά τσιμέντα φωσφορικού ασβεστίου με ανάμειξη α-φωσφορικού τριασβεστίου (α-Ca3(PO4)2, a-TCP) με υδατικό διάλυμα Na¬2HPO4 και μελετήθηκε η κινητική της κρυστάλλωσης ΗΑP στα απατιτικά τσιμέντα σε υπέρκορα διαλύματα φωσφορικού ασβεστίου, σε συνθήκες σταθερού υπερκορεσμού. Έγινε σειρά πειραμάτων στα οποία μετρήθηκε πρώτα η κινητική της κρυστάλλωσης συνθετικών καλά χαρακτηρισμένων κρυσταλλιτών HAP. Η σειρά αυτή των πειραμάτων ήταν το σύστημα αναφοράς. Πρόσθετες σειρές πειραμάτων έγιναν σε υπέρκορα διαλύματα με σύσταση τροποποιημένων προσομοιωμένων βιολογικών ρευστών (mSBF). Ο ρυθμός κρυστάλλωσης HAP σε φύτρα ΗΑΡ σε ηλεκτρολυτικό διάλυμα, ήταν μεγαλύτερος σε σύγκριση με τον αντίστοιχο ρυθμό σε προσομοιωμένο βιολογικό ρευστό (SBF), της αυτής ιοντικής ισχύος και υπερκορεσμού. Η εξάρτηση του ρυθμού κρυστάλλωσης από τον σχετικό υπερκορεσμό, βρέθηκε ότι ήταν πρώτης τάξεως, οδηγώντας και σε αυτή την περίπτωση στο συμπέρασμα, ότι η κρυστάλλωση και στις δύο περιπτώσεις ηλεκτρολυτικών διαλυμάτων γίνεται με μηχανισμό επιφανειακής διάχυσης. Κατά την σπορά των υπέρκορων διαλυμάτων με κρυσταλλίτες των βιοτσιμέντων το συμπέρασμα ως προς τον μηχανισμό κρυσταλλικής ανάπτυξης ήταν το ίδιο. Ο φυσικοχημικός χαρακτηρισμός τόσο των τσιμέντων όσο και της εναποτεθείσας κρυσταλλικής φάσης έγινε με αναλυτικές μεθόδους χαρακτηρισμού στερεών (XRD, FT-IR, SEM). Τα αποτελέσματα έδειξαν ότι τα τσιμέντα αποτελούνταν κατά κύριο λόγο από απατίτη με ποικίλη μορφολογία. Βρέθηκαν απατιτικοί κρύσταλλοι της τάξης μερικών δεκάδων nm, μεγάλοι πρισματικοί κρύσταλλοι (150-300 nm) καθώς και φυλλόμορφες πλάκες 1-2 μm. Παράλληλα, διερευνήθηκε η επίδραση και άλλων ανόργανων υποστρωμάτων που χρησιμοποιούνται ως βιοϋλικά, όπως είναι τα βιοτσιμέντα τα οποία παρασκευάζονται από μιγμάτα ανθρακικού και φωσφορικού ασβεστίου. Έγινε μελέτη της κινητικής της κρυστάλλωσης φωσφορικού οκτασβεστίου (ΟCP) με τη μέθοδο σταθερού υπερκορεσμού στους 37 oC σε pH 7.40 ± 0.1 και σε ιοντική ισχύ 0.15 Μ NaCl. Για την εκκίνηση της κρυσταλλικής ανάπτυξης σε σταθερά υπέρκορα διαλύματα φωσφορικού ασβεστίου χρησιμοποιήθηκαν το βιοτσιμέντο τύπου Α (μίγμα βατερίτη (CaCO3) και διένυδρου φωσφορικού ασβεστίου (CaHPO4•2H2O, DCPD)), και το βιοτσιμέντο τύπου Β (μίγμα βατερίτη (CaCO3), διένυδρου φωσφορικού ασβεστίου (CaHPO4•2H2O, DCPD) και 20% ανθρακικού στροντίου (SrCO3). Επιπλέον, για τη μελέτη της κινητικής της κρυστάλλωσης χρησιμοποιήθηκαν συνθετικοί κρύσταλλοι υδροξυαπατίτη (HAP) και φωσφορικού οκτασβεστίου (OCP), ως υλικά αναφοράς. Η παρουσία ανθρακικών ιόντων έδειξε πως επηρεάζει το ρυθμό κρυστάλλωσης και από την εξάρτηση του ρυθμού κρυστάλλωσης από τον σχετικό υπερκορεσμό συμπεραίνεται ότι η κρυστάλλωση γίνεται με μηχανισμό επιφανειακής διάχυσης. Η μορφολογική εξέταση στις περιπτώσεις κρυστάλλωσης OCP σε φύτρα κρυστάλλων OCP και βιοτσιμέντων (μίγμα CaCO3 και DCPD) έδειξε φυλλόμορφους σχηματισμούς φωσφορικού οκτασβεστίου (OCP), ενώ πλακοειδείς κρύσταλλοι φωσφορικού οκτασβεστίου (OCP) αναπτύχθηκαν σε φύτρα ΗΑΡ. Η συνάφεια μεταξύ ανθρακικών και φωσφορικών αλάτων του ασβεστίου είναι σημαντική για την κατανόηση της συμπεριφοράς και των ιδιοτήτων νέων βιοϋλικών που βασίζονται σ’αυτά τα υλικά. Έτσι, έγινε διερεύνηση της δυνατότητα χρήσεως διαφόρων πολυμορφικών φάσεων ανθρακικού ασβεστίου (CaCO3) ως βάσεων για την παρασκευή νέων βιοϋλικών. Μελετήθηκε ο ετερογενής σχηματισμός του φωσφορικού οκτασβεστίου (OCP) σε υποστρώματα ανθρακικού ασβεστίου, σε συνθήκες σταθερού υπερκορεσμού στους 37 oC σε pH 7.40 ± 0.1 και σε ιοντική ισχύ 0.15 Μ NaCl, χρησιμοποιώντας ως φύτρα σποράς κρυστάλλους ασβεστίτη καθώς και μίγμα κρυστάλλων αραγωνίτη-ασβεστίτη. H κρυστάλλωση του φωσφορικού οκτασβεστίου έλαβε χώρα μετά την πάροδο χρόνου επαγωγής, τ, στα δυο υποστρώματα CaCO3 που μελετήθηκαν και οι αρχικοί ρυθμοί κρυσταλλικής ανάπτυξης ανά μονάδα επιφάνειας βρέθηκαν ότι ήσαν ανεξάρτητοι της ποσότητας των κρυσταλλικών φύτρων, γεγονός που υποδηλώνει την επιλεκτική πυρηνογένεση του σχηματιζόμενου στερεού (ΟCP) στα υποστρώματα που εξετάσθηκαν (CaCO3). Η μορφολογική εξέταση της σχηματιζόμενης φάσης στα δυο υποστρώματα CaCO3 επιβεβαίωσε τον αποκλειστικό σχηματισμό χαρακτηριστικών φυλλόμορφων κρυσταλλιτών OCP, ενώ ο σταθερότερος θερμοδυναμικά υδροξυαπατίτης (HAP) δε σχηματίστηκε ούτε κατευθείαν, ούτε και μέσω υδρόλυσης του θερμοδυναμικά ασταθέστερου OCP, ο οποίος έδειξε να σταθεροποιείται αναπτυσσόμενος ετερογενώς σε ανθρακικά άλατα του ασβεστίου. Είναι γνωστό, ότι η παρουσία ξένων ουσιών ή ιόντων στα υπέρκορα διαλύματα παίζει σημαντικό ρόλο τόσο στην κινητική σχηματισμού του φωσφορικού ασβεστίου όσο και στα χαρακτηριστικά του κρυσταλλικού στερεού το οποίο αναπτύσσεται. Ιδιαίτερο ενδιαφέρον παρουσιάζει ο ρόλος του στροντίου στην κινητική της βιολογικής ασβεστοποίησης, αφού όπως αναφέρεται στη βιβλιογραφία ενισχύει τη βιοενεργότητα και τη βιοσυμβατότητα των βιοϋλικών και μπορεί να βοηθήσει στην αντιμετώπιση της οστεοπόρωσης (π.χ. ρανελικό στρόντιο). Έγινε διερεύνηση της επίδρασης ιόντων στροντίου (Sr2+) στην κινητική κρυσταλλικής ανάπτυξης αλάτων φωσφορικού ασβεστίου σε υποστρώματα συνθετικών κρυστάλλων φωσφορικού οκτασβεστίου (OCP) και υδροξυαπατίτη (HAP) σε υπέρκορα διαλύματα φωσφορικού ασβεστίου. Η παρουσία των ιόντων στροντίου στα υπέρκορα διαλύματα φωσφορικού ασβεστίου έδειξε ότι ενσωματώθηκαν στο κρυσταλλικό πλέγμα τόσο του OCP όσο και του HAP, ενώ κινητικά επιβράδυνε τους ρυθμούς κρυστάλλωσης και των δύο αλάτων. Μεγαλύτερη μείωση του ρυθμού κρυσταλλικής ανάπτυξης μετρήθηκε στην περίπτωση του HAP. Επίσης, παρατηρήθηκαν αλλαγές στη μορφολογία των κρυστάλλων ενώ η παρουσία των ιόντων Sr2+ είχε ως αποτέλεσμα την επιβράδυνση της υδρολυτικής μετατροπής του θερμοδυναμικά ασταθέστερου OCP προς τον θερμοδυναμικά σταθερό HAP. Τέλος, μελετήθηκε η κινητική της διάλυσης των εναποθέσεων φωσφορικού ασβεστίου που απομονώθηκαν από ασβεστοποιημένες φυσικές βαλβίδες ασθενών, αλλά και συνθετικών καλά χαρακτηρισμένων κρυσταλλιτών HAP ως υλικού αναφοράς, σε ακόρεστα διαλύματα. Τα πειράματα έγιναν στους 37 oC, ιοντική ισχύ 0.15 Μ NaCl, σε pH 7.4 ± 0.1 και σε συνθήκες σταθερής ακορεστότητας. Η εξάρτηση του ρυθμού διάλυσης από την σχετική ακορεστότητα των διαλυμάτων εργασίας, η οποία βρέθηκε ότι ήταν δευτέρας τάξεως, έδειξε ότι η διάλυση και στα δύο υποστρώματα ελέγχεται από επιφανειακή διάχυση των δομικών μονάδων. Η διάλυση των παθολογικών εναποθέσεων σε φυσικές βαλβίδες καρδιάς σε συνθήκες σταθερής ακορεστότητας έδωσε σταθερές ταχύτητας σημαντικά μεγαλύτερες σε σύγκριση με τις αντίστοιχες τιμές που ελήφθησαν για συνθετικούς κρυστάλλους ΗΑΡ. Από τη μορφολογική εξέταση τόσο των κρυστάλλων των ασβεστούχων εναποθέσεων όσο και του ΗAP μετά τη διάλυση παρατηρήθηκαν διαφορές μόνο ως προς το μέγεθος των κρυσταλλιτών. Μετά την διάλυση, οι πρισματικοί κρυσταλλίτες του ΗΑΡ είχαν μικρότερο μέγεθος τόσο ως προς το μήκος τους όσο και ως προς το πάχος.