Διαχωριστική ανάλυση, ταξινόμηση και ομαδοποίηση δεδομένων με εφαρμογές στο SPSS

Αρχικά, στο πρώτο μέρος της διπλωματικής εργασίας μελετώνται οι πολυδιάστατες στατιστικές τεχνικές της Διαχωριστικής Ανάλυσης και της Ταξινόμησης δεδομένων, με σκοπό το διαχωρισμό διαφορετικών ομάδων αντικειμένων και τη κατάταξη νέων αντικειμένων σε προκαθορισμένο σύνολο ομάδων με τη χρήση...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Λούκινα, Βίκυ
Άλλοι συγγραφείς: Αλεβίζος, Φίλιππος
Μορφή: Thesis
Γλώσσα:Greek
Έκδοση: 2013
Θέματα:
Διαθέσιμο Online:http://hdl.handle.net/10889/5931
Περιγραφή
Περίληψη:Αρχικά, στο πρώτο μέρος της διπλωματικής εργασίας μελετώνται οι πολυδιάστατες στατιστικές τεχνικές της Διαχωριστικής Ανάλυσης και της Ταξινόμησης δεδομένων, με σκοπό το διαχωρισμό διαφορετικών ομάδων αντικειμένων και τη κατάταξη νέων αντικειμένων σε προκαθορισμένο σύνολο ομάδων με τη χρήση ενός κανόνα, αντίστοιχα. Η διαδικασία κατασκευής και αξιολόγησης των κανόνων Ταξινόμησης βασίζεται στη κανονικότητα των δεδομένων. Ενώ ο σχηματισμός των γραμμικών συναρτήσεων Fisher για το διαχωρισμό των δεδομένων, υποθέτει ίσους πίνακες διασποράς. Στη συνέχεια παρατίθεται παράδειγμα εφαρμογής των δύο παραπάνω στατιστικών τεχνικών μέσω του στατιστικού πακέτου SPSS. Στο δεύτερο μέρος, εξετάζεται η διερευνητική τεχνική της Ομαδοποίησης δεδομένων, όπου στοχεύει στην οργάνωση των τιμών των αντικειμένων σε συστάδες. Έτσι ώστε να επιτυγχάνεται η μέγιστη ομοιότητα μεταξύ των παρατηρήσεων μέσα σε κάθε ομάδα και η μέγιστη ανομοιότητα μεταξύ των συστάδων, όπου αρχικά θεωρούνται άγνωστες σε αντίθεση με τη Διαχωριστικής Ανάλυση και της Ταξινόμηση όπου θεωρούνται γνωστές. Ο πιο δημοφιλής τρόπος για τον υπολογισμό της ομοιότητας είναι η απόσταση, όμως η εφαρμογή των αλγορίθμων συσταδοποίησης είναι πιο αποδοτικοί για την ομαδοποίηση των δεδομένων. Τέλος, εφόσον οι αλγόριθμοι ομαδοποίησης χωριστούν σε δυο κατηγορίες επιδιώκεται η σύγκριση μεταξύ τους, ως προς την αποτελεσματικότητα τους, με τη χρήση του στατιστικού πακέτου SPSS.