Galois theory /
Praise for the First Edition". . .will certainly fascinate anyone interested in abstract algebra: a remarkable book!" & mdash;Monatshefte fur MathematikGalois theory is one of the most established topics in mathematics, with historical roots that led to the development of many central...
Κύριος συγγραφέας: | |
---|---|
Μορφή: | Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Hoboken, NJ :
John Wiley & Sons,
[2012]
|
Έκδοση: | 2nd ed. |
Σειρά: | Pure and applied mathematics (John Wiley & Sons : Unnumbered)
|
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Galois Theory; CONTENTS; Preface to the First Edition; Preface to the Second Edition; Notation; 1 Basic Notation; 2 Chapter-by-Chapter Notation; PART I POLYNOMIALS; 1 Cubic Equations; 1.1 Cardan's Formulas; Historical Notes; 1.2 Permutations of the Roots; A Permutations; B The Discriminant; C Symmetric Polynomials; Mathematical Notes; Historical Notes; 1.3 Cubic Equations over the Real Numbers; A The Number of Real Roots; B Trigonometric Solution of the Cubic; Historical Notes; References; 2 Symmetric Polynomials; 2.1 Polynomials of Several Variables; A The Polynomial Ring in n Variables.
- B The Elementary Symmetric PolynomialsMathematical Notes; 2.2 Symmetric Polynomials; A The Fundamental Theorem; B The Roots of a Polynomial; C Uniqueness; Mathematical Notes; Historical Notes; 2.3 Computing with Symmetric Polynomials (Optional); A Using Mathematica; B Using Maple; 2.4 The Discriminant; Mathematical Notes; Historical Notes; References; 3 Roots of Polynomials; 3.1 The Existence of Roots; Mathematical Notes; Historical Notes; 3.2 The Fundamental Theorem of Algebra; Mathematical Notes; Historical Notes; References; PART II FIELDS; 4 Extension Fields.
- 4.1 Elements of Extension FieldsA Minimal Polynomials; B Adjoining Elements; Mathematical Notes; Historical Notes; 4.2 Irreducible Polynomials; A Using Maple and Mathematica; B Algorithms for Factoring; C The Schönemann-Eisenstein Criterion; D Prime Radicals; Historical Notes; 4.3 The Degree of an Extension; A Finite Extensions; B The Tower Theorem; Mathematical Notes; Historical Notes; 4.4 Algebraic Extensions; Mathematical Notes; References; 5 Normal and Separable Extensions; 5.1 Splitting Fields; A Definition and Examples; B Uniqueness; 5.2 Normal Extensions; Historical Notes.
- 5.3 Separable ExtensionsA Fields of Characteristic 0; B Fields of Characteristic p; C Computations; Mathematical Notes; 5.4 Theorem of the Primitive Element; Mathematical Notes; Historical Notes; References; 6 The Galois Group; 6.1 Definition of the Galois Group; Historical Notes; 6.2 Galois Groups of Splitting Fields; 6.3 Permutations of the Roots; Mathematical Notes; Historical Notes; 6.4 Examples of Galois Groups; A The pth Roots of 2; B The Universal Extension; C A Polynomial of Degree 5; Mathematical Notes; Historical Notes; 6.5 Abelian Equations (Optional); Historical Notes; References.
- 7 The Galois Correspondence7.1 Galois Extensions; A Splitting Fields of Separable Polynomials; B Finite Separable Extensions; C Galois Closures; Historical Notes; 7.2 Normal Subgroups and Normal Extensions; A Conjugate Fields; B Normal Subgroups; Mathematical Notes; Historical Notes; 7.3 The Fundamental Theorem of Galois Theory; 7.4 First Applications; A The Discriminant; B The Universal Extension; C The Inverse Galois Problem; Historical Notes; 7.5 Automorphisms and Geometry (Optional); A Groups of Automorphisms; B Function Fields in One Variable; C Linear Fractional Transformations.