Nano-lithography /

Lithography is an extremely complex tool - based on the concept of "imprinting" an original template version onto mass output - originally using relatively simple optical exposure, masking, and etching techniques, and now extended to include exposure to X-rays, high energy UV light, and el...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Άλλοι συγγραφείς: Landis, Stefan
Μορφή: Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: London : Wiley, 2013.
Σειρά:ISTE.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 05327nam a2200565 4500
001 ocn830161625
003 OCoLC
005 20170124070303.9
006 m o d
007 cr cnu---unuuu
008 130316s2013 enk ob 001 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d YDXCP  |d DG1  |d N$T  |d IDEBK  |d OCLCF  |d OCLCQ  |d DEBSZ  |d DEBBG  |d OCLCQ  |d EBLCP  |d GrThAP 
020 |a 9781118622582  |q (electronic bk.) 
020 |a 1118622588  |q (electronic bk.) 
020 |a 9781118621622  |q (electronic bk.) 
020 |a 111862162X  |q (electronic bk.) 
029 1 |a DEBBG  |b BV041906357 
029 1 |a DEBBG  |b BV043395624 
029 1 |a DEBSZ  |b 431356688 
029 1 |a NZ1  |b 15915858 
035 |a (OCoLC)830161625 
050 4 |a TK7872.M3  |b N3613 2013 
072 7 |a TEC  |x 008010  |2 bisacsh 
082 0 4 |a 621.381531 
049 |a MAIN 
245 0 0 |a Nano-lithography /  |c edited by Stefan Landis. 
264 1 |a London :  |b Wiley,  |c 2013. 
300 |a 1 online resource (353 pages). 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a ISTE 
588 0 |a Print version record. 
505 0 |a Cover; Title Page; Copyright Page; Table of Contents; 6.4.2. Three-dimensionnal AFM (AFM3D) special features; Foreword; Introduction; Chapter 1. X-ray Lithography: Fundamentals and Applications; 1.1. Introduction; 1.2. The principle of X-ray lithography; 1.2.1. The irradiation system for XRL; 1.2.2. Properties of synchrotron radiation; 1.2.3. High Resolution and Deep XRL; 1.2.4. Examples of X-ray lithography beamlines; 1.2.5. Scanner/stepper; 1.2.6. The mask; 1.3. The physics of X-ray lithography; 1.3.1. How phase and intensity of X-rays are altered by interaction with matter. 
505 8 |a 1.3.2. X-ray lithography as a shadow printing technique1.3.3. X-ray absorption in a resist and physical mechanisms involved in its exposure; 1.3.4. Physical model of electron energy loss in resists; 1.3.5. Diffraction effects in X-ray lithography; 1.3.6. Coherence of synchrotron radiation from bending magnet devices; 1.3.7. Basic formulation of diffraction theory for a scalar field; 1.3.8. Rayleigh-Sommerfeld formulation of diffraction by a planar screen; 1.3.9. An example of diffraction effects: Poisson's spot in X-ray lithography; 6.3. Scanning electron microscopy (SEM); 1.4. Applications. 
505 8 |a 1.4.1. Optimal photon energy range for high resolution and deep X-ray lithography1.4.2. Diffraction effects on proximity lithography; 1.4.3. High resolution 3D nano structuring; 1.4.4. 3D polymer structures by combination of NanoImprint (NIL) and X-ray lithography (XRL); 1.4.5. Micromachining and the LIGA process; 1.4.9. Micro-optical element for distance measurement; 1.5. Appendix 1; 1.6. Bibliography; Chapter 2. NanoImprint Lithography; 2.1. From printing to NanoImprint; 2.2. A few words about NanoImprint; 2.3. The fabrication of the mold. 
505 8 |a 2.4. Separating the mold and the resist after imprint: de-embossing2.4.1. The problem; 2.4.2. Adhesion; 2.4.3. Adhesion and physico-chemical surface properties; 2.4.4. Surface treatment of the mold; 2.4.5. Treatment of the resist; 2.4.6. Characterization of the demolding process; 2.5. The residual layer problem in NanoImprint; 2.5.1. The residual layer: a NanoImprint specific issue; 2.5.2. Is the thickness of the residual layer predictable?; 2.5.3. How can the process impact the thickness of the residual layer?; 2.6. Residual layer thickness measurement. 
505 8 |a 2.6.1. Macro-scale approach: coherence between film color and thickness2.6.2. Microscopic approach; 2.7. A few remarks on the mechanical behavior of molds and flow properties of the nanoimprint process; 2.8. Conclusion; 2.9. Bibliography; Chapter 3. Lithography Techniques Using Scanning Probe Microscopy; 3.1. Introduction; 3.2. Presentation of local-probe microscopes; 3.3. General principles of local-probe lithography techniques; 3.4. Classification of surface structuring techniques using local-probe microscopes; 3.4.1. Classification according to the physical nature of the interaction. 
500 |a 3.4.2. Comparison with competing advanced lithography techniques. 
520 |a Lithography is an extremely complex tool - based on the concept of "imprinting" an original template version onto mass output - originally using relatively simple optical exposure, masking, and etching techniques, and now extended to include exposure to X-rays, high energy UV light, and electron beams - in processes developed to manufacture everyday products including those in the realms of consumer electronics, telecommunications, entertainment, and transportation, to name but a few. In the last few years, researchers and engineers have pushed the envelope of fields including optics, physics. 
504 |a Includes bibliographical references and index. 
650 0 |a Nanolithography. 
650 7 |a TECHNOLOGY & ENGINEERING  |x Electronics  |x Circuits  |x General.  |2 bisacsh 
650 7 |a Nanolithography.  |2 fast  |0 (OCoLC)fst01894717 
655 4 |a Electronic books. 
700 1 |a Landis, Stefan. 
776 0 8 |i Print version:  |a Landis, Stefan.  |t Nano Lithography.  |d London : Wiley, ©2013  |z 9781848212114 
830 0 |a ISTE. 
856 4 0 |u https://doi.org/10.1002/9781118622582  |z Full Text via HEAL-Link 
994 |a 92  |b DG1