Linear Algebra and Linear Models

Linear Algebra and Linear Models comprises a concise and rigorous introduction to linear algebra required for statistics followed by the basic aspects of the theory of linear estimation and hypothesis testing. The emphasis is on the approach using generalized inverses. Topics such as the multivariat...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Bapat, R.B (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: London : Springer London : Imprint: Springer, 2012.
Έκδοση:3rd ed. 2012.
Σειρά:Universitext,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03409nam a22004935i 4500
001 978-1-4471-2739-0
003 DE-He213
005 20151103161037.0
007 cr nn 008mamaa
008 120126s2012 xxk| s |||| 0|eng d
020 |a 9781447127390  |9 978-1-4471-2739-0 
024 7 |a 10.1007/978-1-4471-2739-0  |2 doi 
040 |d GrThAP 
050 4 |a QA184-205 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002050  |2 bisacsh 
082 0 4 |a 512.5  |2 23 
100 1 |a Bapat, R.B.  |e author. 
245 1 0 |a Linear Algebra and Linear Models  |h [electronic resource] /  |c by R.B. Bapat. 
250 |a 3rd ed. 2012. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2012. 
300 |a VIII, 167 p. 1 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Universitext,  |x 0172-5939 
505 0 |a Vector Spaces and Subspaces -- Rank, Inner Product and Nonsingularity -- Eigenvalues and Positive Definite Matrices -- Generalized Inverses -- Inequalities for Eigenvalues and Singular Values -- Rank Additivity and Matrix Partial Orders -- Linear Estimation -- Tests of Linear Hypotheses -- Linear Mixed Models -- Miscellaneous Topics -- Additional Exercises on Rank. 
520 |a Linear Algebra and Linear Models comprises a concise and rigorous introduction to linear algebra required for statistics followed by the basic aspects of the theory of linear estimation and hypothesis testing. The emphasis is on the approach using generalized inverses. Topics such as the multivariate normal distribution and distribution of quadratic forms are included. For this third edition, the material has been reorganised to develop the linear algebra in the first six chapters, to serve as a first course on linear algebra that is especially suitable for students of statistics or for those looking for a matrix theoretic approach to the subject. Other key features include: • coverage of topics such as rank additivity, inequalities for eigenvalues and singular values; • a new chapter on linear mixed models; • over seventy additional problems on rank: the matrix rank is an important and rich topic with connections to many aspects of linear algebra such as generalized inverses, idempotent matrices and partitioned matrices. This text is aimed primarily at advanced undergraduate and first-year graduate students taking courses in linear algebra, linear models, multivariate analysis and design of experiments. A wealth of exercises, complete with hints and solutions, help to consolidate understanding. Researchers in mathematics and statistics will also find the book a useful source of results and problems. 
650 0 |a Mathematics. 
650 0 |a Matrix theory. 
650 0 |a Algebra. 
650 0 |a Statistics. 
650 1 4 |a Mathematics. 
650 2 4 |a Linear and Multilinear Algebras, Matrix Theory. 
650 2 4 |a Statistical Theory and Methods. 
650 2 4 |a Statistics for Business/Economics/Mathematical Finance/Insurance. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781447127383 
830 0 |a Universitext,  |x 0172-5939 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4471-2739-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)