Privacy-Preserving Machine Learning for Speech Processing

This thesis discusses the privacy issues in speech-based applications, including biometric authentication, surveillance, and external speech processing services. Manas A. Pathak presents solutions for privacy-preserving speech processing applications such as speaker verification, speaker identificat...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Pathak, Manas A. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York : Imprint: Springer, 2013.
Σειρά:Springer Theses, Recognizing Outstanding Ph.D. Research,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03349nam a22005415i 4500
001 978-1-4614-4639-2
003 DE-He213
005 20151028121116.0
007 cr nn 008mamaa
008 121026s2013 xxu| s |||| 0|eng d
020 |a 9781461446392  |9 978-1-4614-4639-2 
024 7 |a 10.1007/978-1-4614-4639-2  |2 doi 
040 |d GrThAP 
050 4 |a TK5102.9 
050 4 |a TA1637-1638 
050 4 |a TK7882.S65 
072 7 |a TTBM  |2 bicssc 
072 7 |a UYS  |2 bicssc 
072 7 |a TEC008000  |2 bisacsh 
072 7 |a COM073000  |2 bisacsh 
082 0 4 |a 621.382  |2 23 
100 1 |a Pathak, Manas A.  |e author. 
245 1 0 |a Privacy-Preserving Machine Learning for Speech Processing  |h [electronic resource] /  |c by Manas A. Pathak. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2013. 
300 |a XVIII, 142 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Theses, Recognizing Outstanding Ph.D. Research,  |x 2190-5053 
505 0 |a Thesis Overview -- Speech Processing Background -- Privacy Background -- Overview of Speaker Verification with Privacy -- Privacy-Preserving Speaker Verification Using Gaussian Mixture Models -- Privacy-Preserving Speaker Verification as String Comparison -- Overview of Speaker Indentification with Privacy -- Privacy-Preserving Speaker Identification Using Gausian Mixture Models -- Privacy-Preserving Speaker Identification as String Comparison -- Overview of Speech Recognition with Privacy -- Privacy-Preserving Isolated-Word Recognition -- Thesis Conclusion -- Future Work -- Differentially Private Gaussian Mixture Models. 
520 |a This thesis discusses the privacy issues in speech-based applications, including biometric authentication, surveillance, and external speech processing services. Manas A. Pathak presents solutions for privacy-preserving speech processing applications such as speaker verification, speaker identification, and speech recognition. The thesis introduces tools from cryptography and machine learning and current techniques for improving the efficiency and scalability of the presented solutions, as well as experiments with prototype implementations of the solutions for execution time and accuracy on standardized speech datasets. Using the framework proposed  may make it possible for a surveillance agency to listen for a known terrorist, without being able to hear conversation from non-targeted, innocent civilians. 
650 0 |a Engineering. 
650 0 |a Data structures (Computer science). 
650 0 |a Electrical engineering. 
650 0 |a Power electronics. 
650 1 4 |a Engineering. 
650 2 4 |a Signal, Image and Speech Processing. 
650 2 4 |a Communications Engineering, Networks. 
650 2 4 |a Data Structures, Cryptology and Information Theory. 
650 2 4 |a Power Electronics, Electrical Machines and Networks. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781461446385 
830 0 |a Springer Theses, Recognizing Outstanding Ph.D. Research,  |x 2190-5053 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4614-4639-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)