Calabi-Yau Varieties: Arithmetic, Geometry and Physics Lecture Notes on Concentrated Graduate Courses /

This volume presents a lively introduction to the rapidly developing and vast research areas surrounding Calabi–Yau varieties and string theory. With its coverage of the various perspectives of a wide area of topics such as Hodge theory, Gross–Siebert program, moduli problems, toric approach, and ar...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Laza, Radu (Επιμελητής έκδοσης), Schütt, Matthias (Επιμελητής έκδοσης), Yui, Noriko (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New York, NY : Springer New York : Imprint: Springer, 2015.
Έκδοση:1st ed. 2015.
Σειρά:Fields Institute Monographs, 34
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03743nam a22005175i 4500
001 978-1-4939-2830-9
003 DE-He213
005 20151204191434.0
007 cr nn 008mamaa
008 150827s2015 xxu| s |||| 0|eng d
020 |a 9781493928309  |9 978-1-4939-2830-9 
024 7 |a 10.1007/978-1-4939-2830-9  |2 doi 
040 |d GrThAP 
050 4 |a QA241-247.5 
072 7 |a PBH  |2 bicssc 
072 7 |a MAT022000  |2 bisacsh 
082 0 4 |a 512.7  |2 23 
245 1 0 |a Calabi-Yau Varieties: Arithmetic, Geometry and Physics  |h [electronic resource] :  |b Lecture Notes on Concentrated Graduate Courses /  |c edited by Radu Laza, Matthias Schütt, Noriko Yui. 
250 |a 1st ed. 2015. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2015. 
300 |a X, 547 p. 71 illus., 12 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Fields Institute Monographs,  |x 1069-5273 ;  |v 34 
505 0 |a The Geometry and Moduli of K3 Surfaces (A. Harder, A. Thompson) -- Picard Ranks of K3 Surfaces of BHK Type (T. Kelly) -- Reflexive Polytopes and Lattice-Polarized K3 Surfaces (U. Whitcher) -- An Introduction to Hodge Theory (S.A. Filippini, H. Ruddat, A. Thompson) -- Introduction to Nonabelian Hodge Theory (A. Garcia-Raboso, S. Rayan) -- Algebraic and Arithmetic Properties of Period Maps (M. Kerr) -- Mirror Symmetry in Physics (C. Quigley) -- Introduction to Gromov–Witten Theory (S. Rose).- Introduction to Donaldson–Thomas and Stable Pair Invariants (M. van Garrel).- Donaldson–Thomas Invariants and Wall-Crossing Formulas (Y. Zhu).- Enumerative Aspects of the Gross–Siebert Program (M. van Garrel, D.P. Overholser, H. Ruddat).- Introduction to Modular Forms (S. Rose).- Lectures on Holomorphic Anomaly Equations (A. Kanazawa, J. Zhou) -- Polynomial Structure of Topological Partition Functions (J. Zhou).- Introduction to Arithmetic Mirror Symmetry (A. Perunicic). 
520 |a This volume presents a lively introduction to the rapidly developing and vast research areas surrounding Calabi–Yau varieties and string theory. With its coverage of the various perspectives of a wide area of topics such as Hodge theory, Gross–Siebert program, moduli problems, toric approach, and arithmetic aspects, the book gives a comprehensive overview of the current streams of mathematical research in the area. The contributions in this book are based on lectures that took place during workshops with the following thematic titles: “Modular Forms Around String Theory,” “Enumerative Geometry and Calabi–Yau Varieties,” “Physics Around Mirror Symmetry,” “Hodge Theory in String Theory.” The book is ideal for graduate students and researchers learning about Calabi–Yau varieties as well as physics students and string theorists who wish to learn the mathematics behind these varieties. 
650 0 |a Mathematics. 
650 0 |a Algebraic geometry. 
650 0 |a Functions of complex variables. 
650 0 |a Number theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Number Theory. 
650 2 4 |a Algebraic Geometry. 
650 2 4 |a Several Complex Variables and Analytic Spaces. 
700 1 |a Laza, Radu.  |e editor. 
700 1 |a Schütt, Matthias.  |e editor. 
700 1 |a Yui, Noriko.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781493928293 
830 0 |a Fields Institute Monographs,  |x 1069-5273 ;  |v 34 
856 4 0 |u http://dx.doi.org/10.1007/978-1-4939-2830-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)