Topology and Geometric Group Theory Ohio State University, Columbus, USA, 2010–2011 /

This book presents articles at the interface of two active areas of research: classical topology and the relatively new field of geometric group theory. It includes two long survey articles, one on proofs of the Farrell–Jones conjectures, and the other on ends of spaces and groups. In 2010–2011, Ohi...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Davis, Michael W. (Επιμελητής έκδοσης), Fowler, James (Επιμελητής έκδοσης), Lafont, Jean-François (Επιμελητής έκδοσης), Leary, Ian J. (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2016.
Σειρά:Springer Proceedings in Mathematics & Statistics, 184
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03233nam a22005295i 4500
001 978-3-319-43674-6
003 DE-He213
005 20170106123749.0
007 cr nn 008mamaa
008 160914s2016 gw | s |||| 0|eng d
020 |a 9783319436746  |9 978-3-319-43674-6 
024 7 |a 10.1007/978-3-319-43674-6  |2 doi 
040 |d GrThAP 
050 4 |a QA613-613.8 
050 4 |a QA613.6-613.66 
072 7 |a PBMS  |2 bicssc 
072 7 |a PBPH  |2 bicssc 
072 7 |a MAT038000  |2 bisacsh 
082 0 4 |a 514.34  |2 23 
245 1 0 |a Topology and Geometric Group Theory  |h [electronic resource] :  |b Ohio State University, Columbus, USA, 2010–2011 /  |c edited by Michael W. Davis, James Fowler, Jean-François Lafont, Ian J. Leary. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a XI, 174 p. 10 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Proceedings in Mathematics & Statistics,  |x 2194-1009 ;  |v 184 
505 0 |a 1.Arthur Bartels: On proofs of the Farrell-Jones Conjecture -- 2.Daniel Juan-Pineda and Luis Jorge Sanchez Saldana: The K- and L-theoretic Farrell-Jones Isomorphism conjecture for braid groups -- 3.Craig Guilbault: Ends, shapes, and boundaries in manifold topology and geometric group theory -- 4.Daniel Farley: A proof of Sageev’s Theorem on hyperplanes in CAT(0) cubical complexes -- 5.Pierre-Emmanuel Caprace and Bertrand Remy: Simplicity of twin tree lattices with non-trivial commutation relations -- 6.Peter Kropholler: Groups with many finitary cohomology functors. 
520 |a This book presents articles at the interface of two active areas of research: classical topology and the relatively new field of geometric group theory. It includes two long survey articles, one on proofs of the Farrell–Jones conjectures, and the other on ends of spaces and groups. In 2010–2011, Ohio State University (OSU) hosted a special year in topology and geometric group theory. Over the course of the year, there were seminars, workshops, short weekend conferences, and a major conference out of which this book resulted. Four other research articles complement these surveys, making this book ideal for graduate students and established mathematicians interested in entering this area of research. 
650 0 |a Mathematics. 
650 0 |a Group theory. 
650 0 |a Manifolds (Mathematics). 
650 0 |a Complex manifolds. 
650 1 4 |a Mathematics. 
650 2 4 |a Manifolds and Cell Complexes (incl. Diff.Topology). 
650 2 4 |a Group Theory and Generalizations. 
700 1 |a Davis, Michael W.  |e editor. 
700 1 |a Fowler, James.  |e editor. 
700 1 |a Lafont, Jean-François.  |e editor. 
700 1 |a Leary, Ian J.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319436739 
830 0 |a Springer Proceedings in Mathematics & Statistics,  |x 2194-1009 ;  |v 184 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-43674-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)