Perspectives in Lie Theory
Lie theory is a mathematical framework for encoding the concept of symmetries of a problem, and was the central theme of an INdAM intensive research period at the Centro de Giorgi in Pisa, Italy, in the academic year 2014-2015. This book gathers the key outcomes of this period, addressing topics suc...
Συγγραφή απο Οργανισμό/Αρχή: | |
---|---|
Άλλοι συγγραφείς: | , , , , |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Cham :
Springer International Publishing : Imprint: Springer,
2017.
|
Σειρά: | Springer INdAM Series,
19 |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Part I Lecture notes. - 1 Introduction to vertex algebras, Poisson vertex algebras, and integrable Hamiltonian PDE
- 2 An introduction to algebras of chiral differential operators
- 3 Representations of Lie Superalgebras
- 4 Introduction toW-algebras and their representation theory. Part II Contributed papers
- 5 Representations of the framisation of the Temperley–Lieb algebra
- 6 Some semi-direct products with free algebras of symmetric invariants
- 7 On extensions of affine vertex algebras at half-integer levels
- 8 Dirac cohomology in representation theory
- 9 Superconformal Vertex Algebras and Jacobi Forms
- 10 Centralizers of nilpotent elements and related problems
- 11 Pluri-Canonical Models of Supersymmetric Curves
- 12 Report on the Broué-Malle-Rouquier conjectures
- 13 A generalization of the Davis-Januszkiewicz construction
- 14 Restrictions of free arrangements and the division theorem
- 15 The pure braid groups and their relatives
- 16 Homological representations of braid groups and the space of conformal blocks
- 17 Totally nonnegative matrices, quantum matrices and back, via Poisson geometry.