Perspectives in Lie Theory

Lie theory is a mathematical framework for encoding the concept of symmetries of a problem, and was the central theme of an INdAM intensive research period at the Centro de Giorgi in Pisa, Italy, in the academic year 2014-2015. This book gathers the key outcomes of this period, addressing topics suc...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Callegaro, Filippo (Επιμελητής έκδοσης), Carnovale, Giovanna (Επιμελητής έκδοσης), Caselli, Fabrizio (Επιμελητής έκδοσης), De Concini, Corrado (Επιμελητής έκδοσης), De Sole, Alberto (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2017.
Σειρά:Springer INdAM Series, 19
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Part I Lecture notes. - 1 Introduction to vertex algebras, Poisson vertex algebras, and integrable Hamiltonian PDE
  • 2 An introduction to algebras of chiral differential operators
  • 3 Representations of Lie Superalgebras
  • 4 Introduction toW-algebras and their representation theory. Part II Contributed papers
  • 5 Representations of the framisation of the Temperley–Lieb algebra
  • 6 Some semi-direct products with free algebras of symmetric invariants
  • 7 On extensions of affine vertex algebras at half-integer levels
  • 8 Dirac cohomology in representation theory
  • 9 Superconformal Vertex Algebras and Jacobi Forms
  • 10 Centralizers of nilpotent elements and related problems
  • 11 Pluri-Canonical Models of Supersymmetric Curves
  • 12 Report on the Broué-Malle-Rouquier conjectures
  • 13 A generalization of the Davis-Januszkiewicz construction
  • 14 Restrictions of free arrangements and the division theorem
  • 15 The pure braid groups and their relatives
  • 16 Homological representations of braid groups and the space of conformal blocks
  • 17 Totally nonnegative matrices, quantum matrices and back, via Poisson geometry.