An Introduction to Markov Processes

To some extent, it would be accurate to summarize the contents of this book as an intolerably protracted description of what happens when either one raises a transition probability matrix P (i. e. , all entries (P)»j are n- negative and each row of P sums to 1) to higher and higher powers or one exp...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Stroock, Daniel W. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2005.
Σειρά:Graduate Texts in Mathematics, 230
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02945nam a22004575i 4500
001 978-3-540-26990-8
003 DE-He213
005 20151204163244.0
007 cr nn 008mamaa
008 100301s2005 gw | s |||| 0|eng d
020 |a 9783540269908  |9 978-3-540-26990-8 
024 7 |a 10.1007/b138428  |2 doi 
040 |d GrThAP 
050 4 |a QA273.A1-274.9 
050 4 |a QA274-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.2  |2 23 
100 1 |a Stroock, Daniel W.  |e author. 
245 1 3 |a An Introduction to Markov Processes  |h [electronic resource] /  |c by Daniel W. Stroock. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2005. 
300 |a XIV, 178 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Graduate Texts in Mathematics,  |x 0072-5285 ;  |v 230 
505 0 |a Random Walks A Good Place to Begin -- Doeblin's Theory for Markov Chains -- More about the Ergodic Theory of Markov Chains -- Markov Processes in Continuous Time -- Reversible Markov Processes -- Some Mild Measure Theory. 
520 |a To some extent, it would be accurate to summarize the contents of this book as an intolerably protracted description of what happens when either one raises a transition probability matrix P (i. e. , all entries (P)»j are n- negative and each row of P sums to 1) to higher and higher powers or one exponentiates R(P — I), where R is a diagonal matrix with non-negative entries. Indeed, when it comes right down to it, that is all that is done in this book. However, I, and others of my ilk, would take offense at such a dismissive characterization of the theory of Markov chains and processes with values in a countable state space, and a primary goal of mine in writing this book was to convince its readers that our offense would be warranted. The reason why I, and others of my persuasion, refuse to consider the theory here as no more than a subset of matrix theory is that to do so is to ignore the pervasive role that probability plays throughout. Namely, probability theory provides a model which both motivates and provides a context for what we are doing with these matrices. To wit, even the term "transition probability matrix" lends meaning to an otherwise rather peculiar set of hypotheses to make about a matrix. 
650 0 |a Mathematics. 
650 0 |a Probabilities. 
650 1 4 |a Mathematics. 
650 2 4 |a Probability Theory and Stochastic Processes. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540234999 
830 0 |a Graduate Texts in Mathematics,  |x 0072-5285 ;  |v 230 
856 4 0 |u http://dx.doi.org/10.1007/b138428  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)