Spaces of Homotopy Self-Equivalences - A Survey

This survey covers groups of homotopy self-equivalence classes of topological spaces, and the homotopy type of spaces of homotopy self-equivalences. For manifolds, the full group of equivalences and the mapping class group are compared, as are the corresponding spaces. Included are methods of calcul...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Rutter, John W. (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 1997.
Έκδοση:1st ed. 1997.
Σειρά:Lecture Notes in Mathematics, 1662
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02973nam a2200469 4500
001 978-3-540-69135-8
003 DE-He213
005 20190618151245.0
007 cr nn 008mamaa
008 121227s1997 gw | s |||| 0|eng d
020 |a 9783540691358  |9 978-3-540-69135-8 
024 7 |a 10.1007/BFb0093736  |2 doi 
040 |d GrThAP 
050 4 |a QA612-612.8 
072 7 |a PBPD  |2 bicssc 
072 7 |a MAT038000  |2 bisacsh 
072 7 |a PBPD  |2 thema 
082 0 4 |a 514.2  |2 23 
100 1 |a Rutter, John W.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Spaces of Homotopy Self-Equivalences - A Survey  |h [electronic resource] /  |c by John W. Rutter. 
250 |a 1st ed. 1997. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 1997. 
300 |a X, 170 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1662 
505 0 |a Preliminaries -- Building blocks -- Representations: homology and homotopy -- Surfaces -- Generators: surface, modular groups -- Manifolds of dimension three or more -- ?*(X) not finitely generated -- Localization -- ?*(X) finitely presented, nilpotent -- L-R duality -- Cellular/homology complexes: methods -- Cellular, homology complexes: calculations -- Non-1-connected postnikov: methods -- Homotopy systems, chain complexes -- Non-1-connected spaces: calculations -- Whitehead torsion, simple homotopy -- Unions and products -- Group theoretic properties -- Homotopy type, homotopy groups -- Homotopy automorphisms of H-spaces -- Fibre and equivariant HE's -- Applications. 
520 |a This survey covers groups of homotopy self-equivalence classes of topological spaces, and the homotopy type of spaces of homotopy self-equivalences. For manifolds, the full group of equivalences and the mapping class group are compared, as are the corresponding spaces. Included are methods of calculation, numerous calculations, finite generation results, Whitehead torsion and other areas. Some 330 references are given. The book assumes familiarity with cell complexes, homology and homotopy. Graduate students and established researchers can use it for learning, for reference, and to determine the current state of knowledge. 
650 0 |a Algebraic topology. 
650 1 4 |a Algebraic Topology.  |0 http://scigraph.springernature.com/things/product-market-codes/M28019 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783662166123 
776 0 8 |i Printed edition:  |z 9783540631033 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1662 
856 4 0 |u https://doi.org/10.1007/BFb0093736  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
912 |a ZDB-2-BAE 
950 |a Mathematics and Statistics (Springer-11649)