9783731510390.pdf

This work presents a behavior planning algorithm for automated driving in urban environments with an uncertain and dynamic nature. The algorithm allows to consider the prediction uncertainty (e.g. different intentions), perception uncertainty (e.g. occlusions) as well as the uncertain interactive be...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Γλώσσα:English
Έκδοση: KIT Scientific Publishing 2021
id oapen-20.500.12657-51091
record_format dspace
spelling oapen-20.500.12657-510912021-10-20T02:48:26Z Belief State Planning for Autonomous Driving Hubmann, Constantin Autonomes Fahren Entscheidungsfindung Verhaltensgenerierung Trajektorienplanung Interaktion Autonomous Driving Decision Making Behavior Planning Trajectory Planning Interactive Planning bic Book Industry Communication::T Technology, engineering, agriculture::TG Mechanical engineering & materials This work presents a behavior planning algorithm for automated driving in urban environments with an uncertain and dynamic nature. The algorithm allows to consider the prediction uncertainty (e.g. different intentions), perception uncertainty (e.g. occlusions) as well as the uncertain interactive behavior of the other agents explicitly. Simulating the most likely future scenarios allows to find an optimal policy online that enables non-conservative planning under uncertainty. 2021-10-19T08:21:35Z 2021-10-19T08:21:35Z 2021 book ONIX_20211019_9783731510390_2 1613-4214 9783731510390 https://library.oapen.org/handle/20.500.12657/51091 eng Schriftenreihe / Institut für Mess- und Regelungstechnik, Karlsruher Institut für Technologie application/pdf n/a 9783731510390.pdf KIT Scientific Publishing KIT Scientific Publishing 10.5445/KSP/1000122855 10.5445/KSP/1000122855 44e29711-8d53-496b-85cc-3d10c9469be9 9783731510390 KIT Scientific Publishing 47 180 Karlsruhe open access
institution OAPEN
collection DSpace
language English
description This work presents a behavior planning algorithm for automated driving in urban environments with an uncertain and dynamic nature. The algorithm allows to consider the prediction uncertainty (e.g. different intentions), perception uncertainty (e.g. occlusions) as well as the uncertain interactive behavior of the other agents explicitly. Simulating the most likely future scenarios allows to find an optimal policy online that enables non-conservative planning under uncertainty.
title 9783731510390.pdf
spellingShingle 9783731510390.pdf
title_short 9783731510390.pdf
title_full 9783731510390.pdf
title_fullStr 9783731510390.pdf
title_full_unstemmed 9783731510390.pdf
title_sort 9783731510390.pdf
publisher KIT Scientific Publishing
publishDate 2021
_version_ 1771297494402072576