Multi-agent machine learning : a reinforcement approach /

"Multi-Agent Machine Learning: A Reinforcement Learning Approach is a framework to understanding different methods and approaches in multi-agent machine learning. It also provides cohesive coverage of the latest advances in multi-agent differential games and presents applications in game theory...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Άλλοι συγγραφείς: Schwartz, Howard M. (Επιμελητής έκδοσης)
Μορφή: Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Hoboken, NJ : John Wiley & Sons, [2014]
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03495nam a2200769 4500
001 ocn881065009
003 OCoLC
005 20170124071737.4
006 m o d
007 cr |||||||||||
008 140604s2014 nju ob 001 0 eng
010 |a  2014021985 
040 |a DLC  |b eng  |e rda  |c DLC  |d YDX  |d N$T  |d EBLCP  |d IDEBK  |d OCLCF  |d YDXCP  |d E7B  |d CDX  |d RECBK  |d COO  |d DG1  |d DEBSZ  |d B24X7  |d DEBBG  |d OCLCQ  |d EBLB  |d GrThAP 
019 |a 961611919  |a 962663050 
020 |a 9781118884485 (ePub) 
020 |a 1118884485 (ePub) 
020 |a 9781118884478 (Adobe PDF) 
020 |a 1118884477 (Adobe PDF) 
020 |z 9781118362082 (hardback) 
020 |a 9781118884614 
020 |a 1118884612 
020 |a 9781322094762 
020 |a 1322094764 
020 |z 111836208X 
029 1 |a AU@  |b 000053790775 
029 1 |a DEBSZ  |b 422918725 
029 1 |a NZ1  |b 15910051 
029 1 |a AU@  |b 000053596520 
029 1 |a CHVBK  |b 334094534 
029 1 |a CHBIS  |b 010441678 
029 1 |a DEBSZ  |b 431760268 
029 1 |a DEBSZ  |b 449447154 
029 1 |a DEBBG  |b BV042989995 
029 1 |a DEBBG  |b BV043396847 
035 |a (OCoLC)881065009  |z (OCoLC)961611919  |z (OCoLC)962663050 
042 |a pcc 
050 0 0 |a Q325.6 
072 7 |a MAT  |x 003000  |2 bisacsh 
072 7 |a MAT  |x 029000  |2 bisacsh 
082 0 0 |a 519.3  |2 23 
084 |a TEC008000  |2 bisacsh 
049 |a MAIN 
100 1 |a Schwartz, Howard M.,  |e editor. 
245 1 0 |a Multi-agent machine learning :  |b a reinforcement approach /  |c Howard M. Schwartz. 
264 1 |a Hoboken, NJ :  |b John Wiley & Sons,  |c [2014] 
300 |a 1 online resource. 
336 |a text  |2 rdacontent 
337 |a computer  |2 rdamedia 
338 |a online resource  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
520 |a "Multi-Agent Machine Learning: A Reinforcement Learning Approach is a framework to understanding different methods and approaches in multi-agent machine learning. It also provides cohesive coverage of the latest advances in multi-agent differential games and presents applications in game theory and robotics. Framework for understanding a variety of methods and approaches in multi-agent machine learning. Discusses methods of reinforcement learning such as a number of forms of multi-agent Q-learning Applicable to research professors and graduate students studying electrical and computer engineering, computer science, and mechanical and aerospace engineering"--  |c Provided by publisher. 
520 |a "Provide an in-depth coverage of multi-player, differential games and Gam theory"--  |c Provided by publisher. 
588 |a Description based on print version record and CIP data provided by publisher. 
650 0 |a Reinforcement learning. 
650 0 |a Differential games. 
650 0 |a Swarm intelligence. 
650 0 |a Machine learning. 
650 7 |a TECHNOLOGY & ENGINEERING / Electronics / General.  |2 bisacsh 
650 7 |a Differential games.  |2 fast  |0 (OCoLC)fst00893492 
650 7 |a Machine learning.  |2 fast  |0 (OCoLC)fst01004795 
650 7 |a Reinforcement learning.  |2 fast  |0 (OCoLC)fst01732553 
650 7 |a Swarm intelligence.  |2 fast  |0 (OCoLC)fst01139953 
655 4 |a Electronic books. 
655 0 |a Electronic books. 
776 0 8 |i Print version:  |a Schwartz, Howard M., editor.  |t Multi-agent machine learning  |d Hoboken, NJ : John Wiley & Sons, [2014]  |z 9781118362082  |w (DLC) 2014016950 
856 4 0 |u https://doi.org/10.1002/9781118884614  |z Full Text via HEAL-Link 
994 |a 92  |b DG1