Evolutionary Computations New Algorithms and their Applications to Evolutionary Robots /

Evolutionary Computation, a broad field that includes Genetic Algorithms, Evolution Strategies, and Evolutionary Programming, has proven to offer well-suited techniques for industrial and management tasks - therefore receiving considerable attention fom scientists and engineers during the last decad...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Watanabe, Keigo (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Hashem, M.M.A (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2004.
Έκδοση:1st ed. 2004.
Σειρά:Studies in Fuzziness and Soft Computing, 147
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • 1. Evolutionary Algorithms: Revisited
  • 1.1 Introduction
  • 1.2 Stochastic Optimization Algorithms
  • 1.3 Properties of Stochastic Optimization Algorithms
  • 1.4 Variants of Evolutionary Algorithms
  • 1.5 Basic Mechanisms of Evolutionary Algorithms
  • 1.6 Similarities and Differences of Evolutionary Algorithms
  • 1.7 Merits and Demerits of Evolutionary Algorithms
  • 1.8 Summary
  • 2. A Novel Evolution Strategy Algorithm
  • 2.1 Introduction
  • 2.2 Development of New Variation Operators
  • 2.3 Proposed Novel Evolution Strategy
  • 2.4 Proposed NES: How Does It Work?
  • 2.5 Performance of the Proposed Evolution Strategy
  • 2.6 Empirical Investigations for Exogenous Parameters
  • 2.7 Summary
  • 3. Evolutionary Optimization of Constrained Problems
  • 3.1 Introduction
  • 3.2 Constrained Optimization Problem
  • 3.3 Constraint-Handling in Evolutionary Algorithms
  • 3.4 Characteristics of the NES Algorithm
  • 3.5 Construction of the Constrained Fitness Function
  • 3.6 Test Problems
  • 3.7 Implementation, Results and Discussions
  • 3.8 Summary
  • 4. An Incest Prevented Evolution Strategy Algorithm
  • 4.1 Introduction
  • 4.2 Incest Prevention: A Natural Phenomena
  • 4.3 Proposed Incest Prevented Evolution Strategy
  • 4.4 Performance of the Proposed Incest Prevented Evolution Strategy
  • 4.5 Implementation and Experimental Results
  • 4.6 Summary
  • 5. Evolutionary Solution of Optimal Control Problems
  • 5.1 Introduction
  • 5.2 Conventional Variation Operators
  • 5.3 Optimal Control Problems
  • 5.4 Simulation Examples
  • 5.5 Results and Discussions
  • 5.6 Summary
  • 6. Evolutionary Design of Robot Controllers
  • 6.1 Introduction
  • 6.2 A Mobile Robot with Two Independent Driving Wheels
  • 6.3 Optimal Servocontroller Design for the Robot
  • 6.4 Construction of the Fitness Function for the Controllers
  • 6.5 Considerations for Design and Simulations
  • 6.6 Results and Discussions
  • 6.7 Summary
  • 7. Evolutionary Behavior-Based Control of Mobile Robots
  • 7.1 Introduction
  • 7.2 An Evolution Strategy Using Statistical Information of Subgroups
  • 7.3 Omnidirectional Mobile Robot
  • 7.4 Fuzzy Behavior-Based Control System
  • 7.5 Acquisition of Control System
  • 7.6 Summary
  • 8. Evolutionary Trajectory Planning of Autonomous Robots
  • 8.1 Introduction
  • 8.2 Fundamentals of Evolutionary Trajectory Planning
  • 8.3 Formulation of the Problem for Trajectory Planning
  • 8.4 Polygonal Obstacle Sensing and Its Representation
  • 8.5 Special Representations of Evolutionary Components
  • 8.6 Construction of the Fitness Function
  • 8.7 Bounds for Evolutionary Parameters
  • 8.8 Proposed Evolutionary Trajectory Planning Algorithm
  • 8.9 Considerations and Simulations
  • 8.10 Results and Discussions
  • 8.11 Summary
  • A. Definitions from Probability Theory and Statistics
  • A.1 Random Variables, Distributions and Density Functions
  • A.2 Characteristics Values of Probability Distributions
  • A.2.1 One Dimensional Distributions:
  • A.2.2 Multidimensional Distributions
  • A.3 Special Distributions
  • A.3.1 The Normal or Gaussian Distribution
  • A.3.4 The Cauchy Distribution
  • B. C-Language Source Code of the NES Algorithm
  • C. Convergence Behavior of Evolution Strategies
  • C.1 Convergence Reliability
  • C.2 Convergence Velocity
  • References.