Viability of Hybrid Systems A Controllability Operator Approach /

The problem of viability of hybrid systems is considered in this work. A model for a hybrid system is developed including a means of including three forms of uncertainty: transition dynamics, structural uncertainty, and parametric uncertainty. A computational basis for viability of hybrid systems is...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Labinaz, G. (Συγγραφέας), Guay, M. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Dordrecht : Springer Netherlands, 2012.
Σειρά:Intelligent Systems, Control and Automation: Science and Engineering ; 55
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • 1 Introduction
  •  1.1 Motivation and History
  •  1.2 Summary and Organization
  •  1.3 Summary
  •  2 Literature Review
  •  2.1 Nerode et al Approach to Viability of Hybrid Systems [50],[71]
  •  2.2 Aubin et al Approach to Viability of Hybrid Systems [15]
  •  2.3 Deshpande{Varaiya Approach to Viability of Hybrid Systems [35]
  •  2.4 Related Literature
  •  2.5 Conclusion
  •  3 Hybrid Model
  •  3.1 Hybrid Phenomena and Hybrid Model
  •  3.2 Hybrid Trajectories and their Ordering
  •  3.3 Continuity, Fixed Points, and Correct Finite Control Automaton
  •  3.4 Uncertainty in Hybrid Systems
  •  3.5 The Three-Tank Problem
  •  3.6 Nerode{Kohn Formalism for Hybrid Systems
  •  3.7 Conclusion
  •  4 Viability
  •  4.1 Background
  •  4.2 Time{Independent Viability Set
  •  4.3 Fixed Point Approximation
  •  4.4 Computation of TIC{COFPAA{I for Three Admissible Control Law Classes
  •  4.4.1 Piecewise Constant Control
  •  4.4.2 Piecewise Constant with Finite Switching
  •  4.4.3 Piecewise Constant with Polynomial Control
  •  4.5 Time{Dependent Viability Set
  •  4.5.1 Piecewise Constant Control
  •  4.6 Examples
  •  4.6.1 Time{Independent Constraints
  •  4.6.2 Time{Dependent Constraints
  •  4.7 Conclusion
  •  5 Robust Viability
  •  5.1 Uncertainty and Robustness
  •  5.2 Ordering of the Controllability Operator under Uncertainty
  •  5.3 The Uncertain Controllability Operator and the Uncertainty Operator
  •  5.4 Robust Viability
  •  5.5 Robust Viability Control Design
  •  5.6 Examples
  •  5.7 Conclusion
  •  6 Viability in Practice
  •  6.1 Reachable Set Computation of the Controllability Operator
  •  6.2 Viable Cascade Control and Application to a Batch Polymerization Process [55][56]
  •  6.2.1 Batch Polymerization Process Model
  •  6.2.2 Hybrid Model
  •  6.2.3 Viable Cascade Control
  •  6.2.4 Batch Polymerization Control
  •  6.2.5 Discussion and Conclusions
  •  6.2.6 Appendix
  •  6.3 Conclusion
  •  7 An Operator Approach to Viable Attainability of Hybrid Systems [60]
  •  7.1 Introduction
  •  7.2 Attainability and the Attainability Operator
  •  7.3 Viable Attainability and the Viable Attainability Operator
  •  7.4 Simulation Examples
  •  7.5 Conclusion
  •  8 Some Topics Related to the Controllability Operator
  •  8.1 Topological Continuity Arising from Fixed Point Approximation Algorithm
  •  8.2 The Lattice over Control Laws of the Controllability Operator
  •  8.3 Homotopic Approximation under PWC_
  • k
  •  PWCPC_
  • k
  •  8.4 Conclusion
  •  9 Conclusions
  •  References.